60809

From: Sent: To: 78544 Subject:

Whiteman, Brian Thursday, July 28, 2005 8:39 AM STIC-Biotech/ChemLib seq search

10/782,899 2/23/04 Fujimori et al.

STIC-Biotech/ChemLib

nucleotides 1-192 of SEQ ID NO: 1, nucleotides 472-600 of SEQ ID NO: 1 1) the commercial databases, and the issued and published US application databases

Thank you,

Brian Whiteman Remsen, 2D14 mail box 2C18 Patent Examiner - Art Unit 1635 United States Patent and Trademark Office (571) 272-0764

CRF

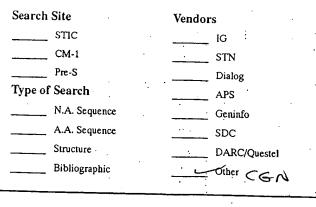
1- levo ma IB

STAFF USE ONLY

Searcher: Searcher Phone: 2-Date Searcher Picked up: Date Completed: Searcher Prep/Rev. Time: Online Time:

ないないたいで、「ないない」のないないないではない。

いい



Type of Search

NA#:	AA#:
Interference:	SPDI:
S/L:	Oligomer:
Encode/Tran	sl:
Structure#:_	Text:
Inventor:	Litigation:

Vendors and cost where applicable
STN:
DIALOG:
QUESTEL/ORBIT:
LEXIS/NEXIS:
SEQUENCE SYSTEM:
WWW/Internet:
Other(Specify):

.

Date completed: 8-8-05
Searcher: Bevering e 2528
Terminal time:
Elapsed time:
CPU time:
Total time:
Number of Searches:
Number of Databases:

•

THIS PAGE BLANK (USPTO)

.

8 15:40:18 2005 Mon Aug

٩.

.

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.	nucleic - nucleic search, using sw model	n on: August 5, 2005, 23:44:09 ; Search time 282.514 Seconds (without alignments) 2959.924 Million cell updates/sec	Title: US-10-782-899-1_COPY_472_600 Perfect score: 129 Sequence: 1 tgacctrctgctcgtagcgatattccggactagttcagcg 129	Scoring table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0	Searched: 7297361 segs, 3241162794 residues	tal number of hits satisfying chosen parameters: 14594722	Minimum DB seg length: 0 Maximum DB seg length: 200000000	Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	se : Pred. No. score grea	esult Query No. Score Match Length DB ID Description	1 129 100.0 600 9 US-09-816-391A-1 Sequence 1, Ap 2 129 100.0 600 21 US-10-782-899-1 Sequence 1, Ap 3 129 100.0 25664 19 US-10-470-555-1 Sequence 1, Ap	4 29.4 22.8 885 22 05-10-61/-320-300 5equence 3 5 29.4 22.8 1377 19 US-10-687-677-1 Sequence 1 6 29.4 22.8 3520 10 US-09-814-353-19115 Sequence 1 7 29.2 22.6 534 18 US-10-332-859-15 Sequence 1
	MO	Run	Titl. Perfi Sequ	Scol	Seal	Total	Mini Maxi	Post	Dati	Real	U	υυ

Sequence 232, App Sequence 17, Appl	squence	equence	ouence	Sequence	guence	squence	quence	Sequence	equence	Sequence	squence	equenci	squence	equence	ouanba	equence	equence	equenci	equenci	equenci	equenci	equence	equence	equenc	equenc	equenc	ouence	equenc		for cancer gene therapy	
US-10-332-859-232 US-10-332-859-17	10-77	10-73	10-33	10-425-115-1523	- 603 - 60	.20-07.	9-938	-09-938-842A-64	-10-437-963-8060	10-087-192-1015	-10-424-599-1288	-10-05	-10-17	-10-17	21-01-	-10-17	-10-17	-10-17	-10-17	-10-17	-10-12	-10-17	-10-18	-10-18	-10-17	-10-17	1-01-	-10-17	ALIGNMENTS	16391A hiro ki bacterium as a drug 5/09/816,391A -26,391A 00/287688 ngum	
1013 18 1836 18	44805 2	592 2	766 1	43 S	6 r 9 v	9 4	451 9	192	טעט ד 9 רק ד 1	57	483 1	037 1	037 1	1 220	1 750	037 1	037 1	037 1	037 I	037 1	037 1	1 100	T / CO	037 1	037 1	57	037	037		RESULT 1 US-09-916-391A-1 US-09-916-391A-1 Sequence 1, Application US/09816391A Pacent No. US2002054865A1 GENERAL INFORMATION: APPLICANT: FUJINGLI, Minneru APPLICANT: PANANO, Jun APPLICANT: AMANO, Jun APPLICANT: NAKAMURA, Toshiyuki APPLICANT: SASAKI, Takayuki APPLICANT: NAKAMURA, Toshiyuki APPLICANT: SASAKI, Takayuki APPLICANT: SASAKI, Takayuki APPLICANT: SASAKI, Takayuki APPLICANT: SASAKI, Takayuki APPLICANT: SASAKI, Takayuki APPLICANT: SASAKI, Takayuki APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, Takayuki APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: NAKAMURA, TOSHIYUKI APPLICANT: TAKAYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: APPLICATION NUMBER, UP 00/2876 APPLICANT: TITLE OF IN ONO: 3 APPLICANT: TOPHICANT, TON NUMBER, UP OF	(4 / 7 /
22.6	22	22	40	52	22	220	52	22	12	21	21	212	21	21	52	51	21	21	515	51	21	52	12	12	21	52	512	21		A-1 AP1icat Applicat Carantrow Tunnor Tunnor Tunnor Awaxo, XAAAU, XAZAWA, XAZAZAWA, XA	·· / C C T \
8 29.2	0		2 2 8	7 8 6	5 28	7 28	8 28	9 28		- 6	3 27	4 7 7 7 7	6 27	7 27	8 27	0	1 27	2 27	5 C C C C C C C C C C C C C C C C C C C	22	6 27	27	8 6	0	1 27	2 2 2 2	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	22		T 1 -	NOTIVON
~ •	Ä		-i i-	Бі U	÷,	ri i	। ਜੋ		2 10	9 0 0 0	0	0 0	1 (1	~ ~	~ ~	n v	- m	m i	м п	n m	m	m i		14	4	4	4 4	4		A A A A A A A A A A A A A A A A A A A	-

100.0%; Score 129; DB 9; Length 600; 100.0%; Pred. No. 3.9e-37;

Query Match Best Local Similarity

L102050.0 Jum	Query Match 100.0%; Score 129; DB 19; Length 2256646; Best Local Similarity 100.0%; Pred. No. 5.2e-36; Matches 129; Conservative 0; Mismatches 0; Indels 0; Gaps 0;	 1 TRACTORFORCEMENTACIONATION CONSTRUCTION CO
Matches129;Conservative0;Mismatches0;Indels0;Gaps0;QY1TGACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACCAAAGACCCCGAGCGAG	QY 121 AGTTCAGGG 129 Db 592 AGTTCAGGG 600	REULT 2 Sequence 1, Papilication US/10782899 Sequence 1, Papilication US/10782899 Sequence 1, Papilication US/10782899 Sequence 1, Papilication US/10782899 Sequence 1, Papilication US/10782 Sequence 1, Papilication US/10782 Second DS 200 - 2000-297688 Papilication US/10782 Second DS 200 - 2000-2000-200 Second DS 200 - 2000-2000-200 Second DS 200 - 2000-200 Second DS 200 - 2000-200 Second DS 200 - 200 Second DS 200 - 2000-200 Second DS 200 - 2000-200 Second DS 200 - 200 Second

×

us-10-782-899-1_copy_472_600.rnpb

Page 2

Mon Aug 8 15:40:18 2005

/ Mon Aug 8 15:40:18 2005

7

.

PRIOR APPLICATION NUMBER: US 60/211,940PRIOR FILING DATE: 2000-06-15PRIOR FILING DATE: 2000-07-07PRIOR FILING DATE: 2000-07-07PRIOR FILING DATE: 2000-07-25PRIOR FILING DATE: 2000-17-21NUMBER OF SEQ ID NOS: 22037SEQ ID NO 19115LENGTH: 3520JENGTH: 3520OBENTARE: DAAORGANISM: HOMO: SAPIELSEQ ID NO 19115LENGTH: 3520JENGTH: 3520Deer Local Similarity 54.1%; Pred. No. 4.2;Matches 60; CONSErVALIVE 0; Mismatches 51; Indels 0; Gaps 0;OVA COTTACACTAGATACATACATACACACACACACACACACACA	CCCCCCARCICATION CONTINUES	: Bauer, INVENTION FPLICATION FPLICATION ILLING DATION LLCATION 1 LLCATION 1 LLCATION 1 LLCATION 1 LLCATION 1 LLCATION 1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1	-15 9; 0 9; 0 9; 0 9; 0 9; 0 9; 0 9; 0 15 9; 0 15 15 15 15 15 15 15 15 15 15 15 15 15
<pre>HYPOTHETICAL: NO ANTI-SENSE: NO ORIGINAL SOURCE: ORIGINAL SOURCE: ORIGINAL SURCE: ORIGINAL SURCE: ORIGINAL SURCE: ORIGINAL SOURCE: NAME/KEY: misc feature NAME/KEY: MISC feature N</pre>	RESULT 5 US-10-687-677-1/c US-10-687-677-1/c Sequence 1, Application US/10687677 Publication No. US20040142419A1 GENERAL INFORMATION: APPLICANT: Guy, John TITLE OF INVENTION: REDUCING CELLULAR DYSFUNCTION CAUSED BY MITOCHONDRIAL GENE TITLE OF INVENTION: MUTATIONS FTLE REFERENCE: 5853-324 CURRENT APPLICATION NUMBER: US/10/687,677 CURRENT APPLICATION NUMBER: US/10/687,677 CURRENT APPLICATION NUMBER: US/10/687,677 CURRENT APPLICATION NUMBER: US/10/687,677 CURRENT FILING DATE: 2003-10-17 NUMBER OF SEO ID NOS 12 SOFTWARE: PatentIN Version 3.2 SOFTWARE: PatentIN Version 3.2 SOFTWARE: PATENTIN CURRENT HIMMER OF 2014 1377 TYPE: DNA CURRENT FILING SAFE DAA CURRENT FILING SAFE DAA CURRENT APPLICATION NUMBER (US/10/687,677 CURRENT APPLICATION (US/10/687,677 CURRENT APPLICATION NUMBER (US/10/687,677 CURRENT APPLICATION (US/10/687,677 CURRENT APPLICA	Best Local Similarity 51.4%; Fred. No. 5.2; Best Local Similarity 51.4%; Fred. No. 5.2; Indels 0; Gaps 0; Matches 45; Conservative 0; Mismatches 26; Indels 0; Gaps 0; QY 57 GAARGGGGGGGTTTTTGTTGGGGGGGGGGGGGGGGGGGG	<pre>Sequence 19115, Application US/09814353 bublication No. US20030165831A1 GENERAL INFORMATION: GENERAL INFORMATION: APPLICANT: Lee. John APPLICANT: Lee. John APPLICANT: Lee. John APPLICANT: Lee. John APPLICANT: Lillie, James TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS FOR TITLE OF INVENTION: NOVEL GENES, COMPOSITIONS, KITS, AND METHODS TITLE OF INVENTION: NOVEL GENES, CONTONIANT, PREVENTION, AND TITLE OF INVENTION: NUMBER: US/09/814,353 CURRENT FILING DATE: 2001-03-21 PRIOR APPLICATION NUMBER: US 60/191,031 PRIOR APPLICATION NUMBER: US 60/191,031 PRIOR APPLICATION NUMBER: US 60/207,124 PRIOR PFLING DATE: 2000-03-21 PRIOR FILING DATE: 2000-05-25</pre>

.

2005
œ
ы
ο
4
ഹ
H
œ
Aug
Mon

us-10-782-899-1_copy_472_600.rnpb

CUMMENT INFORMATION:APPLICANT: Bayer Healthcare LLCAPPLICANT: Bayer Healthcare LLCAPPLICANT: Bayer HealthcarAPPLICANT: Burgess, ChrisAPPLICANT: Burgess, ChrisAPPLICANT: Burgess, ChrisAPPLICANT: Burgess, ChrisAPPLICANT: Harvey, JeameAPPLICANT: Lechner, John F.APPLICANT: Li. ZhengAPPLICANT: Li. ZhengTITLE OF INVENTION: Identification and Verification of Methylation Marker SequencesTITLE OF INVENTION NUMBER: US/10/737,082CURRENT APPLICATION NUMBER: US/10/737,082CURRENT FILING DATE: 2003-12-16NUMBER OF SEQ ID NOS: 300PRIOR FILING DATE: 2003-12-16NUMBER OF SEQ ID NOS: 300SOFTMARE: Patentin version 3.2SEQ ID NO 70LENGTH: 354592 47662 AGCAGTTCACTTGAGACTTTCTCACGGAAAGGAGGTGCGATACAGTTGGTGGTGGTAGTCTTAT 47721 ö ö GTCCAACCGT 107 813 Arccircaccrecicarciarcircircircircicaccicitatic 872 75 16 AGCGATTACTTCGAGCATTACTGACGACAAAGACCCCCGACGATGGTCGGGGGTCTTTT 0; Gaps Gaps ö DB 20; Length 344805; 25; 33; Indels Indels 47722 ATTTGCTACGTGCTCATGTGTGTGTGTGATGAATGCAG 47762 76 TGTTGTGGTGCTGTGTGTGTGTGTGCCGTATTATTCCG 116 45; Best Local Similarity 59.8%; Pred. No. 4.1; Matches 49; Conservative 0; Mismatches Score 29; DB Pred. No. 25; 0; Mismatches APPLICANT: AstraZeneca AB TITLE OF INVENTION: Methods FILE REFRENCE: ASZD-P02-251 CURRENT FILLNG ANTE: 2004-02-13 CURRENT FILING DATE: 2004-02-13 FRIOR APPLICATION NUMBER: 09/463,844 FRIOR APPLICATION NUMBER: 09/463,844 PRIOR APPLICATION NUMBER: 09/463,844 PRIOR APPLICATION NUMBER: 09/463,844 PRIOR APPLICATION NUMBER: 09/463,844 PRIOR APPLICATION NUMBER: 09/463,946 PRIOR APPLICATION NUMBER: 9716162.4 PRIOR APPLICATION NUMBER: 9716162.4 PRIOR APPLICATION NUMBER: 9716162.4 PRIOR APPLICATION NUMBER: 9716162.4 PRIOR APPLICATION NUMBER: 09759,986 PRIOR APPLICATION NUMBER: 09/535,986 PRIOR APPLICATION NUMBER: 00/535,986 48 ACCCCGACCGAGATGGTCGGGGTCTT 108 ATTATTCCGGACTAGTTCAGCG 129 873 Arcaargeeracraergeace 894 Sequence 70, Application US/10737082 Publication No. US20050130170A1 GENERAL INFORMATION: ; Sequence 1, Application US/10779271
; Publication No. US20040220387A1
; GENERAL INFORMATION: SOFTWARE: Patentin version 3.2 SEQ ID NO 1 LENGTH: 344805 22.5%; 55.4%; Query Match 22.5 Best Local Similarity 55.4 Matches 56, Conservative ; TYPE: DNA ; ORGANISM: Homo sapiens US-10-779-271-1 US-10-737-082-70 US-10-779-271-1 RESULT 10 RESULT 11 8 å 8 g 8 q 8 đ ö 48.ACCCCGACCGAGATGGTCGGGGTCTTTTTGTTGTGGTGCTGTGTGACGTGTTGTCCAACCGT 107 769 Arccercacercerecearererererererereresecereratere 0; Gaps 22.6%; Score 29.2; DB 18; Length 1836; Length 1013; Score 29.2; DB 18; Length Pred. No. 3.4; 0; Mismatches 33; Indels APPLICANT: VOSS, FRANK APPLICANT: VOSS, FRANK APPLICANT: Mund, Thomas APPLICANT: Albayrak, Thuur APPLICANT: Allayrak, Thuur APPLICANT: Klein, Matthias APPLICANT: Bauer, Manuel TITLE OF INVENTON! Appotosis-Inducing DNA Sequences FILE REFERENCE: 2923-0133 CURRENT APPLICATION NUMBER: US/10/332, 859 CURRENT FILING DATE: 2003-01-14 PRIOR APPLICATION NUMBER: PC7/EP01/08170 PRIOR FILING DATE: 2003-01-13 APPLICANT: Bauer, Manuel TITLE OF INVENTION: Apoptosis-Inducing DNA Sequences TITLE REFERNCE: 2923-0133 CURRENT APPLICATION NUMBER: US/10/332,859 CURRENT FILING DATE: 2003-01-14 PRIOR APPLICATION NUMBER: PCT/EP01/08170 PRIOR APPLICATION NUMBER: PCT/FP01/08170 Sequence 232, Application US/10332859 PUDLICATION NO. US20040088746A1 GENERAL INFORMATION: APPLICANT: Grimm, Stefan APPLICANT: Schoenfeld, Nicole APPLICANT: Schoenfeld, Nicole APPLICANT: Cramer, Ursula APPLICANT: Cramer, Ursula Sequence 17, Application US/10332859 Publication No. US20040089746A1 GENERAL INFORMATION: APPLICANT: Grimm, Stefan APPLICANT: Schoenfeld, Nicole APPLICANT: Schoenfeld, Nicole APPLICANT: Camer, Ursula APPLICANT: Gewies, Andreas 108 ATTATTCCGGACTAGTTCAGCG 129 829 ATCAATGCCTACTTGGTGGACG 850 22.6%; 59.8%; NUMBER OF SEQ ID NOS: 355 SOFTWARE: Patentin version 3.2 SEQ ID NO 232 LENGTH: 1013 NUMBER OF SEQ ID NOS: 355 SOFTWARE: Patentin version 3.2 SEQ ID NO 17 LENGTH: 1836 Voss, Frank Mund, Thomas Albayrak, Timur Gille, Hendrik Klein, Matthias Query Match 22.64 Best Local Similarity 59.81 Matches 49; Conservative TYPE: DNA ORGANISM: Mus musculus ; TYPE: DNA ; ORGANISM: Mus musculus US-10-332-859-232 US-10-332-859-232 US-10-332-859-17 US-10-332-859-17 APPLICANT: APPLICANT: APPLICANT: APPLICANT: APPLICANT: Query Match RESULT 8 đ δ q

ر Mon Aug 8 15:40:18 2005 us-10-782-899-1	copy_472_600.rnpb
<pre> TYPE: DNA TYPE: DNA TYPE: DNA TYPE: Homo mapienme Us-10-737-082-70 Usery Match 22.5%, Score 29; DB 22; Length 354592; Query Match Sei Conmervative 0; Matcheme Sei Conmervative 0; Mismatcheme Sei Conmervative Sei Conmervative 0; Mismatcheme Sei Conmervative 0; Mismatcheme Sei Conmervative 0; Mismatcheme Sei Conmervative Sei Conmervative 0; Mismatcheme Sei Conmervative 0; Mismatcheme Sei Conmervative Sei Conme</pre>	<pre>FILE REFERENCE: 2923-0133 CURRENT APPLICATION NUMBER: US/10/332,859 CURRENT FILING DATE: 2003-01-14 FRIOR APPLICATION NUMBER: PCT/EP01/08170 FRIOR PILING DATE: 2003-01-07-13 NUMBER OF SEQ ID NOS: 355 SOFTWARE: PATENTIN VERSION 3.2 SOFTWARE: PA</pre>
RESULT 12 US-10-765-790-70 Sequence 70, Application US/10765790 Publication No. US20050130172A1 SERVERAL INFORMATION: APPLICANT: Bayer Healthcare LLC APPLICANT: Beard, Chris APPLICANT: Burgess, Chris	48 ACCCCGACCGAGATGGTCGGGGGTCTTTTGTTGTGGGGGGTGTGTG
APPLICANT: Gamuon, Allison APPLICANT: Harvey, Jeanne APPLICANT: Lechner, John F. APPLICANT: Lichner, John F. APPLICANT: Li, Zheng TITLB OF INVENTION : Identification and Verification of Methylation Marker Sequences FILB REFRENCE: 1657/2035 CURRENT FPLICATION NUMBER: US/10/765,790 CURRENT FPLICATION NUMBER: US/10/765,790 CURRENT FPLICATION NUMBER: US 10/737,082 FRIDR APPLICATION NUMBER: US 10/737,082 FRIDR APPLICATION NUMBER: US 10/737,082 FRIDR APPLICATION NUMBER: US 10/737,082 FRIDR FPLING DATE: 2003-12-16 NUMBER OF SEQ ID NOS: 300 SEQ ID NOS: 300 SEQ ID NO 70 LENGTH: 354592 T TYPE: DNA CORANISM: PAGE OF SEC	RESULT 14 US-10-425-115-152385/c Sequence 152385, Application US/10425115 Sequence 152385, Application US/10425115 Sequence 152385, Application US/004214272A1 GENERAL INFORMATION: APPLICANT: La ROSA, Thomas J. APPLICANT: La ROSA, Thomas J. APPLICANT: Cao, Yongwei TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE OF INVENTION: Plants FILE REFERENCE: 39-21(5322) B CURRENT FILING DATE: 2003-04-28 NUMBER OF SEQ ID NOS: 369326 SEQ ID NO 152395
Query Match22.5%Score 29; DB 22; Length 354592;Best Local Similarity55.4%; Pred. No. 25;DB 22; Indels0; GapsMatches56; Conservative0; Mismatches45; Indels0;Qy16 AGGATTACTTCGAGGATACTGACGACAAAGACCCCCACCGAGATGCTCGGGGGTTTTT75Db50053AGCGTTCCTTGAGGCTTTCTCCAGGAAAGAGGAGGAGTAGGTGGTGGTTAT50112Qy76 TGTTGTGGGGCTTTCTCCAGGGAAAGAGGAGGAGGATACAGTTGGTGGTGGTTTTTT50112Qy76 TGTTGTGGGGCTTTCTCCAGGGAAAGAGGAGGAATACAGTTGGTGGTGGTGGTTAT50113Db50113ATTTGCTAGGGGCTTGTTGTCGATGATGATGGCGG50153Db50113ATTTGCTAGGTGCTCATGTGTGGTGATGATGCAG50153	<pre> LENGTH: 1043 TYPE: DNA ORGANISM: Zea mays ORGANISM: Zea mays TRYE: INFORMATION: Clone ID: MRT4577_70558C.1 OTHER INFORMATION: Clone ID: MRT4577_70558C.1 US-10-425-115-152385 Query Match</pre>
RESULT 13 US-10-332-859-317 Publication No. U520040088746A1 Fublication No. U520040088746A1 GENRRAL INFORMATION: APPLICANT: Grimm, Stefan APPLICANT: Schoenfeld, Nicole APPLICANT: Schoenfeld, Nicole APPLICANT: Statulis, Erik APPLICANT: Cramer, Ursula APPLICANT: Camer, Ursula APPLICANT: Gewies, Andreas APPLICANT: Gewies, Andreas APPLICANT: Gewies, Andreas APPLICANT: Gewies, Andreas APPLICANT: Geile, Hendrik APPLICANT: Alle, Hendrik APPLICANT: Alle, Hendrik APPLICANT: Klein, Matthias APPLICANT: Bauer, Manuel TITLE OF INVENTION: Apoptosis-Inducing DNA Sequences	<pre>79 TGTGGTGCTGCTGGGGGTGTTGTCGGG 117 79 TGTGGTGCTGGGGGTGTCTCCAACCGTATTATTCCGG 117 981 TCCTGAGCATCGGGGTCTTCACGAAACCTCCCG 943 981 TCCTGAGCATCGGGGGTCTTCACGAAACCTCCCG 943 591 TCCTGAGCATCGGGGGTCTTCACGAAACCCCCAACTTCCCG 943 500 - 903 - 410 - 31 500 - 903 - 410 - 31 500 - 903 - 410 - 31 500 - 903 - 410 - 31 500 - 903 - 410 - 31 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 910 500 - 910 - 9</pre>

8 15:40:18 2005 Mon Aug 1

r

.

÷

.*r*

2005
15:40:18
œ
Aug
Mon
\$

•

28.2 21.9 13540 8 28.2 21.9 13540 8 28.2 21.9 13540 10 28.2 21.9 13540 10 28.2 21.9 13540 10 28.2 21.9 18038 8 28.2 21.9 18038 8 28.2 21.9 18038 10 28.2 21.9 18038 10 28.2 21.9 18038 10 28.2 21.9 18038 10	31 27.8 21.6 2.037 8 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG220 AAASTG20 AAACG205995 AAACG205995 AAACG205995 AAACG205995 AAACG207040 Human Sec AAACG22078 AAACG22078 Human Sec AAACG22078 AAAAGG22078 AAAAGG22078 Human Sec AAAAGG22078 AAAAGG22078 AAAAGG22078 Human Sec AAAAG22078 AAAAG22078 Human Sec AAAAG22078 AAAAG22078 Human Sec AAAAAG22078 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA		<pre>LTT 1 23224 AEK52324 standard; DNA; 600 BP. AEK52324 standard; DNA; 600 BP. AEK52324; 13-AUG-2002 (first entry) DNA encoding cancer gene therapy associated protein. DNA encoding cancer; anaerobic bacteria; antitumour active protein; cancer; gene therapy; gene; ds. Solid cancer; anaerobic bacteria; antitumour active protein; cancer; gene therapy; gene; ds. Bifidobacterium longum. Key Location/Qualifiers CDS 193474 /*tag= a /product= "cancer gene therapy protein" JP2002097144-A. JP2002097144-A. C2-APR-2001; 2001UF-00290187. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001UF-0029018. 21-SEP-2001; 2001</pre>	in or its precursor. 10; Page 16; 21pp; Japanese. nvention describes a method of trea obic bacteria by site specific deli umour active protein or its precurs
			A A A A A A A A A A A A A A A A A A A	F X X X X X X X X X X X X X X X X X X X
<pre>GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd nucleic search, using sw model August 5, 2005, 21:17:03 ; Search time 206.159 Seconds (without alignments) 3704.166 Million cell updates/sec</pre>	US-10-782-899-1_COPY_472_600 score: 129 : 1 tgaccttctgctcgtagcgatattccggactagttcagcg 129 table: IDENTITY_NUC Gapop 10.0 , Gapext 1.0 : 4390206 seqs, 2959870667 residues mber of hits satisfying chosen parameters: 8780412 DB seq length: 200000000 DB seq length: 200000000	-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	<pre>4:* *:* *:* *:* *:* *:* *:* *:* *:* *:*</pre>	22.2 2184 11 ABD03007 22.0 936 2 AAT79329 22.0 936 2 AAT79329 22.0 936 8 AAT79329 22.0 936 8 AAT79329 22.0 2451 6 AAD58914 22.0 2451 6 ABZ12259 21.9 599 12 ACH79902 21.9 1152 5 AAS73582 21.9 1152 5 AAS73582

infant formula, pet food or a pharmaceutical compositi from tablets, liquid bacterial suspensions, dried oral t, wet oral supplement, dry tube feeding or wet tube f eful in DNA arrays or chips to carry out analysis of the Bifidobacterium gene. AB031844 to AB031850 re truim related nucleotide sequences given in the Seque rom the present invention but not mentioned further wi tion. N.B. The sequence data for this patent is not re inted specification but is based on sequence informati by the European Patent Office	SQ Sequence 156638 BP; 32098 A; 46491 C; 46415 G; 31634 T; 0 U; U UCHEF; Query Match 100.0%; Score 129; DB 6; Length 156638; Best Local Similarity 100.0%; Pred. No. 2.9e-33; Matches 129; CONBERVATIVE 0; Mismatches Qy 1 radeCrrcrGcrGcrGcGACGATTACTGGGCATTACTGGACGAAGACCCGGACGGGGG 60 Db 141691 TGACCTTCTGCTCGATTACTCGAGCATTACTGACGATTACTGACGATAGACCCCGACGGGGGG 60	Qy 61 TGGTCGGGGTCTTTTGTTGTGGGGCGTGTGGGGGGTGTTGT		RESULT 3 AAS59535 standard; DNA; 26309 BP. XX AC AAS59535;	XX DT 13-FBB-2002 (first entry) XX	Kropioninaccetium aches minimizgente processi encourne on	KW SAPHO syndrome; synovitis; acne; pustulosis; hypertosis; osteomyelitis; KW uveitis; endophthalmitis; bone; joint; central nervous system; ELISA; KW inflammatory lesion; acne vulgaris; enzyme linked immunosorbent assay; KW dermatological; osteopathic; neuroprotectant; ds.	XX OS Propionibacterium acnes.	XX PN WO200181581-A2.	D 01-NOV-2001.	PF 20-APR-2001; 2001WO-US012865. XX PR 21-APR-2000; 2000US-0199047P. PR 02-UNN-2000; 2000US-0208841P.	(CORI-) CORI	Skeiky) L'maisor	XX WPI; 2001-616774/71.	AT Propionibacterium acnes polypeptides and nucleic acids useful for PT vaccinating against and diagnosing infections, especially useful for PT treating acne vulgaris.	XX PS Claim 1; SEQ ID NO 30; 1069pp; English.	CC Sequences AAS59506-AAS59804 represent DNA molecules encoding CC Propionibacterium acnes immunogenic polypeptides. The proteins and their CC propionibacterium acness is used in the reatment prevention and
CC cancer gene therapy associated protein XX SQ Sequence 600 BP; 132 A; 165 C; 161 G; 142 T; 0 U; 0 Other; Query Match 100.0%; Score 129; DB 6; Length 600; Best Local Similarity 100.0%; Score 129; DB 6; Length 600; Matches 129; Conservative 0; Mismatches 0; Indels 0; Gaps 0; QY 1 TGACCTCTGGTGGGATTACTTGGAGGATTACTGAGGACGAGAGGACCGGAGGA 60 472 TGACCTTCTGGTGGGATTACTTCGAGGATTACTGGAGGACGAGAGGACCGGAGGA 531	Qy61TGGTCGGGGGTTTTTTTTTTTTTTTTTTTTTTTTTTCCGGACT120Db532TGGTCGGGGTTTTTTGTTGTGGTGGTGGTGGTGTTGTTGT	RESULT 2 ABQB1850/c ID ABQB1850 standard; DNA; 156638 BP. XX AC ABQB1850; XX 19-NOV-2002 (first entrv)	XX DE Bifidobacterium longum NCC2705 related nucleotide seguence SEQ ID:1106.	XX Bifidobacterium longum NCC2705; Bifidobacterium; bacterial; KW antidiarrheic; antibacterial; inhibitor of Salmonella; detection; KW identification; lactic acid bacterium; diarrhoea; pathogenic bacteria; KW rotavirus; food composition; pharmaceutical composition; gene; ds.		RD1227152-A1			(NEST) SOC PROD NESTLE SA.	WPI; 2002-668397/72.	XX PT PT PT a probe or primer for detecting and/or identifying Bifidobacterium longum PT in a biological sample. XX	Disclosure; SEQ ID NO ILU6; SUPP; English. The present invention describes a nolvnurleotide (I) communising a	sequence of a Bifidobacterium genome selected from the nucleotide sequences given in AD081842 and AB081843, or a sequence exhibiting at least 90% identity or which hybridises with the sequences given in	ABQ81842 and ABQ81843. Also described is a polynucleotide (II) encoding a fusion protein, comprising a sequence selected from 1097 sequence given	In ABP65258 to ABP66594 ligated in frame to a polynucieotide encourd a c heterologous polypeptide. (I) has antidiarrheic and antibacterial C activities, and can be used as an inhibitor of Salmonella. (I) (which is c a probe) is useful for the detection and/or identification of	Bifidobacterium longum in a biological sample. A carrier containing the lactic acid bacterium Bifidobacterium longum NCC2705 (CNCM I-2618) can be	used for preventing and/or treating diarrhoea brought about by pathogenic bacteria and/or rotavirus. The carrier is a food composition selected from milk, yogurt, curd, cheese, fermented milks, milk based fermented nroducts, ice-creame, fermented

Mon Aug 8 15:40:18 2005

005
0
0
3
•••
~
ő
н
••
ο
4
S
Ä
•••
œ
ω
Aug
J
d.
~
Mon
2
Σ

The invention relates to an isolated polynucleotide (ACF64435-ACF64733) encoding a Propionibacterium acnes protein. The invention also relates to

CC polypeptides encoded by the polynucleotides (ABM35624-ABM64536) and to immunogenic fragments of P. acnes polypeptides. The invention cc additionally encompasses expression vectors and host cells comprising a additionally encompasses expression vectors and host cells comprising a controleotide of the invention, antibodies against polypeptides of the invention; fusion proteins comprising a polypeptide of the invention; a controleotide for stimulating an immune response specific for a P. acnes antigen-presenting cells that express the polypeptide; a method; a vaccine composition (comprising P. acnes polypeptides, controleotide, a vaccine composition (comprising P. cells prepared via this method; a vaccine composition (comprising P. acnes polypeptides and a method for inhibiting the development of P. acnes in a contigen-presenting cells that express the polypeptide; a method and kit for detecting or determining the presence or absence of P. acnes in a patient. The P. acnes polypeptides, polynucleotide; antibodies, fusion proteins, T cell populations or antigen-presenting cells that express the colypeptides are useful for diagnosing, preventing or treating acne vulgaris, or for stimulating an immune response specific for a P. acnes for duction. The yolynucleotides can also be used as probes or primers for nucleic acid hybridistation. The vaccine composition is useful for the controlection of an immune response specific for a P. acnes to nucleic acid hybridistation. The vaccine composition is useful for the controlection of an immune response specific for a P. acnes to the kit is useful for performing a diagnostic assay. The present controlection of an immune response data for this patent did not form to the invention. Note the specifically claimed control with printed specification, but was obtained in electronic format controlection, but was obtained in electronic format 9538 reaceaccarccarccararreagecreactreared 9597 ö 96 37 TGACGACAAAGACCCCGACCGAGATGGTCGGGGGTCTTTTTTTGTTGTGGTGCTGTGACGTGT Gaps Sequence 26309 BP; 5546 A; 8173 C; 7885 G; 4699 T; 0 U; 6 Other; Human; ds; gene; pain; neuronal tissue; gene therapy; spinal segmental nerve injury; chronic constriction injury; CCI; spared nerve injury; SNI; Chung. ö Length 26309; Indels 39; DB 8; 9598 reccacercerceaceaceacerceace 9630 97 TGTCCAACCGTATTATTCCGGACTAGTTCAGCG 129 Score 30.6; DI Dred. No. 9.8; Costigan M; 0; Mismatches Human gene NM_004046, SEQ ID NO 9619. ADE63675 standard; DNA; 2453 BP Befort K, 14-AUG-2001; 2001US-0312147P. 01-NOV-2001; 2001US-0346382P. 26-NOV-2001; 2001US-0333347P. 23.7%; 58.1%; 14-AUG-2002; 2002WO-US025765 29-JAN-2004 (first entry) (GEHO) GEN HOSPITAL CORP. (FARB) BAYER AG. 54; Conservative D'UTEO D, WPI; 2003-268312/26 GENBANK; NM_004046 Local Similarity WO2003016475-A2 Homo sapiens. 27-FEB-2003. ADE63675; ບັ Query Match Woolf Matches Ś ADE63675 RESULT \$ 8 đ 8 ą

New composition comprising two or more isolated polypeptides, useful for preparing a medicament for treating pain in an animal.

Claim 1; Page; 1017pp; English.

CC or human polynucleotides or a polynucleotide which represents a fragment, cr human polynucleotides or a polynucleotide which represents a fragment, derivative or allelic variation of the nucleic acid sequence. Also comprising the vector, a method for identifying a nucleotide sequence which is differentially regulated in an animal subjected to pain and a kit to perform the method, an array, a method for identifying an agent that increases or decreases the expression of the polynucleotide sequence that increases or decreases the expression of the polynucleotide sequence comprising the restor, a method for identifying an agent that increases or decreases the expression of the polynucleotide sequence that increases or decreases the expression of the polynucleotide sequence compound that regulates the activity of one or more of the subjected to pain, a method for identifying a compound which regulates the expression in an animal subjected to pain, a method for identifying a compound that regulates the activity of one or more of the polynucleotides, a method for identifying a compound und that an animal of one or more of the polypeptides given in the specification, a method for identifying a method for identifying a conjuncleotides or their antibodies. The polypreshides given in the polyneptides or their antibodies. The polypreshides given in the polyneptides or their antibodies. The polypreshides given in the condulates its activity is useful for preparing a medicament for treating pain and a pharaceutical composition operimed a minal (c.g. gene condulates its activity is useful for preparing a medicament for treating condulates its activity is useful for preparing a medicament for treating condulates its activity is useful for preparing a medicament for treating condulates its activity is useful for preparing a minal (c.g. gene condulates its activity is useful for preparing a minal (c.g. gene condulates its activity is useful for preparing a minal (c.g. gene condulates its activity is useful for polypeptides of rat invention discloses a composition comprising two or more isolated Sequence 2453 BP; 622 A; 536 C; 635 G; 660 T; 0 U; 0 Other; ftp.wipo.int/pub/published_pct_sequences. The

Score 29.6; DB 10; Length 2453; Pred. No. 11; 0; Mismatches 39; Indels 0; Query Match 22.9%; Best Local Similarity 57.6%; Matches 53; Conservative

ö 4 CCTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACAAAGACCCCCGACGATGG 63 0; Gaps 8

റ്റ

1924 ACGTGGTCTGTCGTATCTCGTTCGGATCCGTG 1955 g

RESULT 6 ADR9167

ADR91671 standard; DNA; 885 BP

ADR91671;

16-DEC-2004 (first entry)

Novel S. pneumoniae DNA sequence, SEQ ID 306

Meningitis; bacteraemia; pneumonia; otitis media; ds; bacterial infection.

Streptococcus pneumoniae.

US6800744-B1

05-0CT-2004

98US-00107433 30-JUN-1998;

97US-0051553P. 98US-0085131P. 02-JUL-1997; 12-MAY-1998;

(GENO-) GENOME THERAPEUTICS CORP. Bush D; Doucette-Stamm LA,

2004-697205/68 : I d M

P-PSDB; ADR94274

New isolated nucleic acid encoding a Streptococcus pneumoniae polypeptide, useful for diagnosing, preventing and/or treating pathological conditions resulting from the bacterial infection.

Disclosure; SEQ ID NO 306; 151pp; English.

The invention relates to an isolated nucleic acid comprising a sequence encoding a streptococcus pneumoniae ADR91366polypeptide, or its fragments, with any of 9 fully defined sequences (appearing as ADR94308, ADR94489; ADR94800, ADR94897, ADR9459, ADR95542, ADR95682, ADR94489; ADR92197, ADR92234, ADR9459, ADR95542, ADR95682, ADR94866, ADR92197, ADR92234, ADR93079, ADR92366, ADR92680 or ADR94866, ADR92197, ADR92234, ADR93039, ADR95562, ADR92660 or ADR94866, ADR92197, ADR92234, ADR93039, ADR92366, ADR92660 or ADR94866, ADR92197, ADR92234, ADR93039, ADR92566, ADR92660 or ADR94866, ADR92197, ADR92234, ADR93039, ADR92566, ADR92660 or ADR94866, ADR92197, ADR92234, ADR9200, ADR92366, ADR92660 or ADR94866, ADR92197, ADR92234, ADR9200, ADR92066, ADR92660 or ADR94866, ADR92197, ADR92234, ADR9200, CONSECUTIVE NUCLEOCIDES of He NUCLEOCIDE Sequences, or at least 40, 60 or 300 consecutive nucleotides sequence. The nucleic acids and proteins are chosen from 5206 disclosed sequences. Also included are a recombinant expression vector comprising the isolated nucleic acid cited above operably linked to a transcription regulatory element, a cell comprising the recombinant expression vector and a probe comprising at least 20 consecutive nucleotides of the nucleotide sequences as cited above. The methods and compositions of the present invention are useful for the diagnosis, prevention and/or treatment of pathological conditions resulting from bacterial infection by the present Streptococcus pneumoniae e.g. pneumonia, bacteraemia, meningitis and otitis media. The present sequence is one of the 2603 disclosed S. pneumoniae nucleic acid sequences. Note: The sequence data for this patent did not form part of the printed specification, but was obtained in electronic format directly from USPTO at

seqdata.uspto.gov/sequence.html?DocID=6800744B1.

Sequence 885 BP; 243 Å; 168 C; 218 G; 256 T; 0 U; 0 Other;

32 ATTACTGACGACAAAGACCCCGACCGAGATGGTCGGGGGTCTTTTGTTGTGGTGCTGTGA 91 Gaps ö Length 885; Indels 36; DB 13; 22.8%; Score 29.4; DB 58.6%; Pred. No. 9.1; ive 0; Mismatches 51; Conservative Local Similarity Query Match Aatches Best 8

ö

604 ATTACAGATATCAACAAGGCTTACCTAAATCGTGGTGACCTTTCTGTTGAGCTGATGGGGG 663 92 CGTGTTGTCCAACCGTATTATTCCGGA 118 g δ

664 cerecruserrecerecia 690 g

ADQ89190/c RESULT 7

ADQ89190 standard; DNA; 1377 BP. A

ADQ89190;

07-OCT-2004 (first entry)

Non-natural ND4 mitchondrial protein coding sequence.

gene therapy; ND4 mitochondrial protein; ND4; cellular dysfunction; mtDNA mutation; Leber Hereditary Optic Neuropathy; mitochondrial gene mutation; human; gene; ds.

sapiens Homo

Synthetic

US2004142419-A1.

22-JUL-2004.

8 15:40:18 2005 Mon Aug r

17-OCT-2003; 2003US-00687677.

18-OCT-2002; 2002US-0419435P

(GUYJ/) GUY J.

Guy J;

WPI; 2004-579908/56.

New non-naturally occurring nucleic acid comprises a nucleotide sequence that encodes a functional ND4 mitochondrial protein, useful for reducing cellular dysfunction caused by mitochondrial gene mutations

Claim 7; SEQ ID NO 1; 16pp; English

The invention describes a non-naturally occurring nucleic acid comprising a nucleotide sequence that encodes a functional ND4 mitochondrial protein and differs from a naturally occurring nucleic acid that encodes a ND4 mitochondrial protein by at least one codon substitution. Also described are: a cell into which has been introduced the non-naturally occurring nucleic acid above; and reducing dysfunction in a cell caused by a mtDNA mutation associated with Leber Hereditary Optic Neuropathy. Specifically claimed is non-naturally occurring ND4 nucleic acid comprising 1377 base pairs (SEQ ID NO. 1), fully defined in the specification. The nucleic acid is useful for reducing cellular dysfunction caused by mitochondrial gene mutations. Compositions comprising the non-naturally occurring nucleic acids are also useful for treating mtDNA mutations in animal subjects, including humans. This sequence represents a non-naturally occurring ND4 mitochondrial protein encoding polynucleotide sequence. Score 29.4; DB 12; Length 1377; Sequence 1377 BP; 330 A; 436 C; 341 G; 270 T; 0 U; 0 Other; 22.8%;

ö 1292 erchaecricarericarericareridericidericaecricicecenerieriere 1233 116 Gaps ; 0 Human; ovarian cancer; ds; tumour; cytostatic; DNA marker. 26; Indels Pred. No. 10; 0; Mismatches Human ovarian cancer DNA marker #19115. ADL45225 standard; DNA; 3520 BP. 2000US-0207124P. 2000US-0211940P. 2000US-0216820P. 2000US-0220661P. 2000US-0257672P. 2000US-0191031P. 21-MAR-2001; 2001WO-US009126 63.4%; (first entry) 1232 AACATGTACAG 1222 Conservative 117 GACTAGTTCAG 127 Local Similarity Les 45; Conserv WO200170979-A2. 21-MAR-2000; 25-JUL-2000; 21-DEC-2000; 25-MAY-2000; L5-JUN-2000; Homo sapiens 07-JUL-2000; 20-MAY-2004 27-SEP-2001 ADL45225; Query Match Best Loca Matches ω ADL45225 RESULT ą 8 g 8

(MILL-) MILLENNIUM PREDICTIVE MEDICINE INC.

Lillie J; Lee J, WPI; 2001-611502/70.

Novel isolated nucleic acid molecules (markers) overexpressed in ovarian cancer cells as compared to their normal non-cancerous ovarian cells are used to characterize stage, grade, histological type of ovarian cancer.

cc the patient afflicted with ovarian cancer comprising providing to cells of the patient an antiense oligonuclectide complementary to a marker of the invention. The markers are useful for assessing if a patient is afflicted with ovarian cancer, which involves comparing the level of expression of a marker in a control non-ovarian cancer. The level of expression of the expression levels indicates ovarian cancer. The level of expression of a marker corresponds to a secreted protein or to a transcribed oplynucleotide or its portion. The level of expression of a marker corresponds to a secreted protein or to a transcribed of marker is detected using an antibody that specifically binds with the fragment is detected using an antibody that specifically binds with the protein or protein fragment. Alternatively, the level of expression of the marker is assessed by detecting the presence of a transcribed copynucleotide which anneals with the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the presence of a transcribed configuration of the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a portion of the polynucleotide comprising the marker or anneals with a subsequent configuration. Note: The sequence data for this patent did not form part of invention. Note: The sequence d ö The invention relates to nucleic acid markers which are overexpressed in ovarian cancer cells as compared to their expression in normal (i.e. non-cancerous) ovarian cells. The invention also relates to polypeptides polypeptides, a method of inhibiting ovarian cancer in a patient at risk of developing ovarian cancer involving inhibiting expression of a gene corresponding to a marker of the invention and a method of treating a 63 ċċcrċriaċriecrcarcroteċriaccrreritrriradraeaarraarċċċrcaċcrderide 86 Gaps ö Length 3520; Sequence 3520 BP; 679 A; 939 C; 1047 G; 855 T; 0 U; 0 Other; 51; Indels from WIPO at ftp.wipo.int/pub/published_pct_sequences. ch 22.8%; Score 29.4; DB 5; 1 Similarity 54.1%; Pred. No. 14; 60; Conservative 0; Mismatches 51; Disclosure; SEQ ID NO 19115; 106pp; English Local Similarity 27 Query Match Matches Best

q 8

87 gcéarchecthrichteréségéctéraácciéctésécécékerteáraárec 137 64 TCGGGGTCTTTTTGTTGTGGTGCTGTGTGTGTTGTTCCCAACCGTATTATTC 114 δ g

ABL01350/c RESULT

ABL01350 standard; DNA; 634 BP.

ABL01350;

(first entry) 15-MAR-2002

Murine apoptosis related DNA sequence #15.

Apoptosis; mouse; cancer; autoimmune disease; viral infection;

reperfusion injury; stroke; liver damage; Huntington's di transgenic animal; hepatotropic; antialcoholism; cytostat immunosuppressive; virucide; nootropic; neuroprotective; antiparkinsonian; cerebroprotective; ds.

Mus sp

DE10126344-A1.

24-JAN-2002

30-MAY-2001; 2001DE-01026344.

14-JUL-2000; 2000DE-01034303

(PLAC) MAX PLANCK GES FOERDERUNG WISSENSCHAFTEN

Gewies Schoenfeld N, Braziulis E, Cramer U, Nbayrak T, Gille H, Klein M; Albayrak T, Grimm S, Mund T,

WPI; 2002-115563/16.

New apoptosis-associated nucleic acid sequences and polyr for diagnosis, treatment and prevention of e.g. tumors ar neurodegeneration. The present invention relates to nucleic acids from the n nucleic acid is associated with apoptosis. The sequences the diagnosis, treatment and prevention of diseases assoc excessive or inadequate apoptosis, including tumours, aut diseases, viral infections, degradative diseases (hlzhein Parkinson's and Huntington's diseases), repertusion injuu alcohol-induced injury to the liver, for identifying ager these diseases, and to prepare transgenic animals in whic an apoptosis related sequence is altered. These are usefi-tion of apoptosis investigations of apoptosis and re-tered diseases and related and re-Sequence 634 BP; 157 A; 184 C; 160 G; 133 T; 0 U; 0 Othe 33; Indels 48 ACCCCGACCGAGATGGTCGGGGTCTTTTTGTTGTGGTGCTGTGTGACGT 245 Arccrtcrcrtccrcccccarcrcrtrrrrrrrrcricccccrcraccr Score 29.2; DB 6; Length Pred. No. 9.7; including dilatory cardiomyopathy. The present sequence apoptosis related sequences of the invention 0; Mismatches 108 ATTATTCCGGACTAGTTCAGCG 129 164 Claim 1; Page 137; 227pp; German. 185 ATCAATGCCTACTTGGTGGACG ADR89493 standard; DNA; 1800 BP Query Match 22.6%; Best Local Similarity 59.8%; Matches 49; Conservative ((first entry) 02-DEC-2004 ADR89493; RESULT 10 ADR89493 8 ብ 5 q

Apoptosis-inducing protein coding sequence, SEQ ID 17.

Cytostatic; Immunosuppressive; Neuroprotective; Vasotropic; Virucide; apoptosis; neurodegenerative disease; ischaemic disease; cancer; autoimmune disease; viral disease; murine; gene; ds.

Mus musculus

isease; omyopathy; tic; vasotropic;	HA TA	Key Location/Qualifiers CDS 11170 /*tag= a /product= "Apoptosis-inducing protein"
	A N	WO2004078112-A2.
	283	16-SEP-2004.
	PF VX	05-MAR-2004; 2004WO-JP002899.
	X R R	07-MAR-2003; 2003JP-00061179. 10-MAR-2003; 2003US-0452943P.
	XX	(ASAH-) ASAHI KASEI PHARMA CORP.
	Y I Å	Muramatsu S, Takeda M, Matsuda A;
A, VOSS F;	X H H H	WFI; 2004-662343/64. P-PSDB; ADR89494.
peptides, useful	X T T T T T T T S	New protein capable of inducing apoptosis, useful in screening for compounds that inhibit or induce apoptosis which may be used to treat neurodegenerative, ischemic, autoimmune and viral diseases, and cancer.
	S S	Claim 4; SEQ ID NO 17; 316pp; English.
mouse, where the	\$ 888	The present invention relates to novel purified proteins (I) and their coding sequences (II) (ADR89477-ADR89550), which are capable of inducing apoptosis. The proteins (I) are useful as a target in screening for
e used l with me	ខួនន	compounds that modulate apoptosis. Compounds that modulate the expression or activity of the protein may be useful in treating neurodegenerative diseases, ischaemic diseases, cancer, autoimmune diseases, or viral
mer's, ry, stroke and	ខេន	diseases. Measurement of the expression or activity of the protein may also be used to diagnose or disease or a susceptibility to a disease.
ch expression of ul for cenetic	ξ Ο'	Sequence 1800 BP; 323 A; 526 C; 556 G; 395 T; 0 U; 0 Other;
elated diseases, is one of the	δăž	Query Match 22.6%; Score 29.2; DB 13; Length 1800; Best Local Similarity 59.8%; Pred. No. 13; Matches 49; Conservative 0; Mismatches 33; Indels 0; Gaps 0.
r;	δ	48 ACCCCGACCGAGATGGTCGGGGGGCTTTTTTGTTGTGGGGGGGG
634;	đ	769 Arccercacercerédecearereertitertédecerétaácereereereeceaerre 828
0; Gaps 0;	δ	108 ATTATTCCGGACTAGTTCAGCG 129
	qq	829 Arcaargeeracraergeace 850
GCTGGCCCACTTC 186	ABL	RESULT 11 ABLO1352 UD ABLO1352 standard; DNA; 1836 BP.
	AC	ABL01352;
	123	15-MAR-2002 (first entry)
	X D X	Murine apoptosis related DNA sequence #17.
	KW KW	Apoptosis; mouse; cancer; autoimmune disease; viral infection; Alzheimer's disease; Parkinson's disease; Huntington's disease; reperfusion injury; stroke; liver damage; dilatory cardionyopathy; transgenic animal; heptotropic; antialcoholism; cytostatic; immunosupressive; virucide; nootropic; neuroprotective; vasotropic; antianovisor; corropic; neuroprotective; vasotropic;
ic; Virucide; cancer;	XXS	Mus sp.
	XX	DE10126344-A1.
	₹ G	24-JAN-2002.

ö

ב ר	Мот Дис 8 15.40.18 2005 1 сору 472	472 600.rng Page 7
xx		
ΡF	30-MAY-2001; 2001DE-01026344.	DK WF1; 2003-615309/58. DR P-PSDB; ABO70427.
¥ K	14-JUL-2000; 2000DE-01034303.	v is sequences and encoding pendomonas actudinosa polybeptide
PA XX	(PLAC) MAX PLANCK GES FOERDERUNG WISSENSCHAFTEN.	FI NOVEL IDURATED NUMBERS OF DESCRIPTION OF DESCRIPTION OF DESCRIPTION OF DESCRIPTION OF DESCRIPTION OF ANN AND AND AND AND AND AND AND AND AND
XII	Grimm S, Schoenfeld N, Braziulis E, Cramer U, Gewies A, Voss F;	
Z X	ALDAYEAK I, GILLE D,	
ВX		
14 H	New apoptosis-associated nucleic acid sequences and polypeptides, userul for diagnosis, treatment and prevention of e.g. tumors and	
XX	Claim 1; Page 138-139; 227pp; German.	
ž	ments in the most of the second of an ide from the moster the	
ទទទ		CC components for diagnosis and/or treatment of P. aeruginosa-caused CC infection, and in detection of P. aeruginosa sequences or other sequences
ខ្លួន	excessive or inadequate apoptosis, including tumours, autoimmune diseases, viral infections, deradative diseases (Alzheimer's, diseases, viral infections, arrangenting, arrangenting, arrangenting, arrangenting, arrangenting, arrangenting,	
ខ្លួនទ	Parkinson's and Huntington's diseases), reperinsion injury, scroke and alcohol-induced injury to the liver, for identifying agents for treating +hono Aisosses and to menare transcenic animals in which expression of	
ខេត	an apoptosis related sequence is altered. These are useful for genetic and/or pharmacological investigations of apoptosis and related diseases,	ß
ខ្ល	including dilatory cardiomyopathy. The present sequence is one of the apoptosis related sequences of the invention	Query Match 22.2%; Score 28.6; DB 11; Length 1146; Dont room similarity 57.1%; Pred No. 19;
XX	Sequence 1836 BP; 341 A; 534 C; 562 G; 399 T; 0 U; 0 Other;	initiating for the second of Mismatches 39; Indels 0; Gaps
ŌĂĬ	Query Match 22.6%; Score 29.2; DB 6; Length 1836; Best Local Similarity 59.8%; Pred. No. 13; Marches 49: Conservative 0: Mismatches 33: Indels 0; Gaps 0;	Qy 39 ACGACAAAGACCCCGACCGACGAGATGGGGGGTCTTTTTGTTGTGGTGGTGACGTGTTG 98 Db 90 ACGATCAAGACCCTGGCCGAACTCGGGGGTGATCTTCCTGATGTTCTGCCTTGGAG 847
ż		OV 99 TCCAACCGTATTATTCCGGACTAGTTCAGCG 129
3 8	CCACTTC	Db 846 TrCAGCTGCGCAAGCTCTTCCAGGTCGGCG 816
õ	108 ATTATTCCGGACTAGTCAGCG 129	RESULT 13
q	B73 ATCAATGCTACTTGGTGGACG 894	ABD03637 ID ABD03637 standard; DNA; 2184 BP
RES	RESULT 12	XX AC ABD03637; XY
ABD ID	03998/c ABD03998 standard; DNA; 1146 BP.	DT 29-JUL-2004 (first entry) VY
XX	ABD03998;	AA DE Pseudomonas aeruginosa polynucleotide #2241. XX
223	29-JUL-2004 (first entry)	Kw Bacterial infection; gene; ds; Pseudomonas aeruginosa infection; Kw antibacterial.
283	Pseudomonas aeruginosa polynucleotide #2602.	
2 <u>8</u> 9	Bacterial infection; gene; ds; Pseudomonas aeruginosa infection; antibacterial.	
XS	Pseudomonas aeruginosa.	XX PD 22-APR-2003. XX
X	US6551795-B1.	222 222 222 222 222 222 222 222 222 22
38 X	22-AFR-2003.	.PR 18-FEB-1998; 98US-0074788P. PR 27-JUL-1998; 98US-0094190P.
PF XX	18-FEB-1999; 99US-00252991.	XX PA (GENO-) GENOME THERAPEUTICS CORP.
RA	18-FEB-1998; 98US-0074788P. 27-JUL-1998; 98US-0094190P.	
X & X	(GENO-) GENOME THERAPEUTICS CORP.	DX WFI; 2003-615309/58. DR P-PSDB; ABO70066.
Id	Rubenfield MJ, Nolling J, Deloughery C, Bush D;	

.

٠

. . .

-14-<u>-</u>-

Novel isolated nucleic acid encoding Pseudomonas aeruginosa polypeptide, useful as molecular targets for diagnostics, prophylaxis and treatment of pathological conditions resulting from bacterial infection. 도요도

XX	CEO ID NO 2011 - 155-2
2 X	UBITEUR /ddcc+ /T+77 ON AT ARS /ARAGONATA
ប្ល	Pseudomonas aeruginosa polypept
ខូន	polynucleotides encoding them. The sequences are useful in diagnosis and therapy of pathological conditions, as molecular targets for diagnostics,
ខ្ល	cof pathological conditions res
30	ng a compound, ringga nucleic
g	argets, as targets for antibacterial drugs,
ខ្ល	losa drugs, as templates for recombinant
ទួទ	
35	in detertion of P aeruginosa ser
ខ	omonas species using biochip technology. Sequences ABD01
ប្ល	17967 represent P. aeruginosa polynucleotides
ខ្លួ	for this patent did not form pa
55	Specification but was obtrained in electronic format from USPTO at
ž	
SQ	Sequence 2184 BP; 342 A; 706 C; 726 G; 410 T; 0 U; 0 Other;
ð	Match
Ma	Similarity 57.1%; Pred. No. 23; 2; Conservative 0; Mismatches 39; Indels
ò	39 ACGACAAAGACCCCGACCGAGATGGTCGGGGGTCTTTTTTGTTGTGGTGCTGTGACGTGTTG 98
1	
an	1538 ACGAICARGACCCIGGCCGAACTCGGGGGGGGGGGGGGGGGGGGGGGG
δ	99 TCCAACCGTATTATTCCGGACTAGTTCAGCG 129
qa	1598 TICAGCCTGCGCAAGCTCTTCCAGGTCGGCG 1628
RESULT	LT 14
ID	ABD03707 standard; DNA; 2868 BP.
XX	48D03707.
X	
503	29-JUL-2004 (first entry)
۲ ۲ ۲	Pseudomonas aeruginosa polynucleotide #2311.
xx	
KW K	Bacterial infection; gene; ds; Pseudomonas aeruginosa infection; antibacterial.
X S	Pseudomonas aeruginosa.
X	
Y X	.Tg~c6/Tccoco
D 2	22-APR-2003.
FF S	18-FEB-1999; 99US-00252991.
X	
R R Y	10-FEB-1296; 9803-00/4/00F. 27-JUL-1998; 9803-0094190P.
A Y X	(GENO-) GENOME THERAPEUTICS CORP.
Id	Rubenfield MJ, Nolling J, Deloughery C, Bush D;
8883	WPI; 2003-615309/58. P-PSDB; AB070136.
2 2 1	isolated nucleic acid encoding Pseudomonas aeruginosa polypeptide
Ld Ld	useful as molecular targets for diagnostics, prophylaxis and treatment of pathological conditions resulting from bacterial infection.

Disclosure; SEQ ID NO 2311; 455pp; English.

The invention relates to Pseudomonas aeruginosa polypeptides and the polynucleotides encoding them. The sequences are useful in diagnosis and therapy of pathological conditions resulting from a prophylaxis and treatment of pathological conditions resulting from a bacterial infection, for evaluating a compound, such as a polypeptide, to the ability to bind a P. aeruginosa nucleic acid, as components of effective antibacterial targets, as targets for antibacterial drugs, including anti-P. aeruginosa drugs, as templates for recombinant production of P. aeruginosa drugs, as templates for recombinant components for diagnosis and/or treatment of P. aeruginosa-caused infection, and in detection of P. aeruginosa sequences ABD1397-for preduction but was obtained in electronic form part of the invention. Note: The sequence data for this patent did not form part of the printed specification but was obtained in electronic form part of the printed specification but was obtained in electronic form part of the printed specification but was obtained in electronic form part from USPTO at ö 1177 AccArcAAcAccordecceAAcrocecercarcritecricarcricitrecreateric 86 Gaps ; 0 Length 2868; Sequence 2868 BP; 435 A; 939 C; 941 G; 553 T; 0 U; 0 Other; Indels DB 11; :66 Treascereceaascererreaseres 1267 Score 28.6; DB Pred. No. 24; 0; Mismatches TCCAACCGTATTATTCCCGGACTAGTTCAGCG 129 Query Match 22.2%; Best Local Similarity 57.1%; Matches 52; Conservative (66 1237 RESULT 15 å 5 q 6

AAT79329

BP AAT79329 standard; DNA; 936

AAT79329;

(revised) (first entry) 17-0CT-2003 16-FEB-1998 DNA encoding Archaeoglobus fulgidus esterase VC16-16MC.

Esterase; thermostable enzyme; ester; chiral compound; cheese; pulp; paper; lignin removal; sugar; lignocellulose; disease resistance; feedstuff; ss.

Archaeoglobus fulgidus; strain VC16.

Key CDS

Location/Qualifiers .936

*tag= b

.384, .432, .489, 382. 385. 487. 5595. 691. : 80d) : 80d) : sođ) : 80d) /transl_except= (/transl_except= (/trans

aa:Ala) aa:Gly) aa:Ala) aa:Val) aa:Val) aa:Ile) aa:Asn)

aa:Ala) aa:Ala)

: 80d)

.501, .507, .561, (pos: transl_except= unsure

/note= "encodes Ile" *tag=

WO9730160-A1

21-AUG-1997

97WO-US002039. 11-FEB-1997;

96US-00602359. 16-FEB-1996;

ž

ካ

(RECO-) RECOMBINANT BIOCATALYSIS INC

Reid J, Maffia AM, Link S, Swanson RV; Callen W; Murphy D, Kosmotka A, Robertson DE, Warren PV, Ko

WPI; 1997-425035/39. P-PSDB; AAW23076 Nucleic acid encoding heat stable esterase from thermophilic bacteria which is active in organic solvents, useful in cheese or paper manufacture, and to study plant resistance to disease.

Claim 1; Page 50-51; 113pp; English

CC This DNA sequence codes for thermostable esterase VC16-16MC (AAW23076) of Archaecoglobus fulgidus VC16, an isolate that grows optimally at 85 deg C and pH 7.0. It can be amplified from a pBluescript vector by PCR (see AAT79317-18). Claimed, newly identified polynucleotides (AAT79321-30) CC mand pH 7.0. It can be used for recombinant production of the encoding esterases (AAW23089) were recovered from genomic gene libraries. They can be used for recombinant production of the cc erzymes in host cells, and as probes to identify related sequences. The esterases are stable at high temperature and in organic solvents, making them superior for use in production of pure chiral compounds used in pharmaceutical, agricultural and other chemical industries. A method is c them superior for use in production of pure chiral compounds used in c pharmaceutical, agricultural and other chemical industries. A method is c there acid using a claimed esterase. The enzymes may also be useful as ripening starters in cheese making, in lignin removal in paper and pulp c ripening starters in cheese making, in lignin removal in paper and pulp c manufacture, in crabolydrate derivative synthesis, in fermentable ugar production from lignocellulosic waste, in the study of plant wall c structure, plant sbred for production of highly degradable animal c feeds. (Updated on 17-0CT-2003 to standardise OS field)

Sequence 936 BP; 235 A; 220 C; 265 G; 214 T; 0 U; 2 Other;

0; Gaps 22:0%; Score 28.4; DB 2; Length 936; 56.4%; Pred. No. 20; :ive 0; Mismatches 41; Indels 0 Best Local Similarity 56.4 Matches 53; Conservative Query Match

õ

718 GACCTTGAGAACCTCCTCCCGCCCGATCATAACCCGCCGAATACGACCCGCCGAGAGAT 777 å

778 GAAGGAGAAGTTTTCGGGCAGATGCTGAGAAGAG 811 ዋ

Search completed: August 5, 2005, 23:52:43 Job time : 209.159 secs

....

ł

,

8 15:40:18 2005 🔶 Mon Aug

٩.

	Ltd.
5.1.6	Compugen
version	- 2005
nCore	1993
<u>8</u>	Û
	Copyright

OM nucleic - nucleic search, using sw model

August 5, 2005, 23:28:19 ; Search time 68.7196 Seconds (without alignments) 3071.607 Million cell updates/sec Run on:

Title: Perfect score:

US-10-782-899-1_COPY_472_600 129 1 tgaccttctgctcgtagcga.....tattccggactagttcagcg 129 Sequence :

IDENTITY NUC Gapop 10.0, Gapext 1.0 Scoring table:

1202784 seqs, 818138359 residues Searched:

2405568 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Issued Patents NA:*

Database :

- 4 0 0
- /cgm2_6/ptcdata/1/ina/5A_COMB.8eg:* /cgm2_6/ptcdata/1/ina/5B_COMB.8eg:* /cgm2_6/ptcdata/1/ina/6A_COMB.8eg:* /cgm2_6/ptcdata/1/ina/6A_COMB.8eg:* /cgm2_6/ptcdata/1/ina/PCTUS_COMB.8eg:* /cgm2_6/ptcdata/1/ina/PCTUS_COMB.8eg:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Result No.	Score	\$ Query Match	% Query Match Length	DB	ID	Description
	29.4	22.8	870	4	US-09-583-110-1324	Sequence 1324, Ap
10	29.4	22.8	885	4	-09-107-433-30	306, 7
e	29.4	22.8	194915	4	US-09-949-016-15584	15584
4	29	22.5	601	4	US-09-949-016-68059	68059,
S	29	~	264665	4	US-09-949-016-13747	13747,
9 0	28.6	22.2	1146	4	US-09-252-991A-2602	260
7	28.6	22.2	2184	4	US-09-252-991A-2241	224
8	. 28.6	22.2	2868	4	-60-	
6	28.4	22.0	936	3	-08-	31,
c 10	27.4	21.2	1160	4	US-09-270-767-13705	E
с 11	26.6	20.6	601	4	US-09-949-016-125432	
12	26.6	20.6	139552	4	US-09-949-016-15300	
c 13	26.4	20.5	14707	4	-60-	
Ч	26.2	20.3	601	4	US-09-949-016-143314	Sequence 143314,
н	26.2	20.3	601	4	US-09-949-016-143485	
c 16	26.2	20.3	746	4	US-09-380-419C-1	4
Ч	26.2	20.3	907	m	US-08-672-850-7	, ,
-	26.2	20.3	907	'n	-08-	Sequence 11, Appl
٦	26.2	20.3	907	4	US-09-565-177A-7	, ,
2	26.2	20.3	907	4	60	11,
с 21	26.2	20.3	1001	m	US-08-672-850-10	10,
°.	26.2	20.3	1001	4	US-09-565-177A-10	10, App
23	26.2	20.3	85912	4	-09-949-016	12362,
24	26.2	20.3	85913	4	US-09-949-016-16109	1610
25	26.2	20.3	120727	4	-09-949-016-157	15787,
26	26.2	20.3	5	4	-09-049-016-	e 15788,
c 27	26	20.2	1074	4	US-09-934-901-7	Sequence 7, Appli

NUMBER OF SEQUENCES: 5206 CORRESPONDENCE ADDRESS: THERAPEUTICS CORPORATION ADDRESSES: GENOME THERAPEUTICS CORPORATION STREET: 100 Beaver Street

0000	0 0 0 8 0 0 0 8	00000 0000 0000	50.55 50.55 50.55 50.55 50.55	1074 1074 1074 43280	***	US-09-934-868-17 US-10-321-210-7 US-10-320-874-7 US-10-320-874-7 TC-00-040-1272	Sequence 17, Appl Sequence 7, Appli Sequence 1, Appli Sequence 1, Appli Securence 12, Appli	
υυ	2 67 67 7 67 67 7 67 67	ំណ៍ណ៍	000	י		US-09-198-092-1 US-08-674-887A-5		
υυ	36 36 37	25.8 25.8 25.8	000			US-U8-951-844-5 US-09-412-347-5 US-09-313-294A-1215	sequence 3, Appli Sequence 5, Appli Sequence 1215, Ap	
	38 96	ហំហំ	5 5	-		US-09-949-016-15680 US-09-949-016-14184	Sequence 15680, A Sequence 14184, A	
υυ	40		6 6	4		US-09-949-016-11940 US-09-023-655-992	11	
00	141		6 6			US-08-461-244-1 TIC-09-016-434-1096	1, Ap	
טנ	440	 ກໍທີ່ທີ	ካወወ			US-09-023-655-955 US-09-023-655-955 US-09-221-017B-174		
						ALIGNMENTS		
RES US-	SULT 1 -09-583-11 Sequence 1 Patent No.	111	324 , Appl 99703	-1324 3-1324 124, Application US/0958311 6699703	us/	09583110		
	GENERAL		MATION	<u></u>				
	APPLICANT: TITLE OF I	CANT: LYNN DO OF INVENTION:	INVENTION:	ğ	Sta	et al. id and Amino Acid Seg	nences Relating to Streptococcus	suc
·- ·- ·	FILE F	FILE OF INVENTY FILE REFERENCE: CURPENT ADD. ICAT	ICE: P	N: PREUMORIAE PATHO0-07A ON NUMBER: US/		tor Diagnostics and 09/583.110	Tapaurus	
	CURREN	CURRENT FILING DATE: PRIOR APPLICATION NU	NG DAT	E: 2000 NUMBER:	0-05-2 US 0	433		
	PRIOR PRIOR	FILING	ATION	1998-(NUMBER:	06-3 US	0 60/085,131		
•• •• ••	PRIOR	APPLIC FILING	ATION DATE: DATE:	K FILING DATE: 1998-US-12 R APPLICATION NUMBER: US 60 R FILING DATE: 1997-07-02	1-cr	ر 60/051,553 2		
	NUMBER SEQ ID 1	IBER OF SEQ ID NO 1324	N ID N	IOS: 532	53			
	358	LENGTH: 870 TYPE: DNA ORGANISM: S) trepto	coccus I	nend	moniae		
-sn	-09-583	3-110-1	324	583-110-1324				
~ H &	Query Match Best Local Matches 5	Match ocal Si s 51;	ц.	22 58 vativ	. 88 . 68	Score 29.4; DB 4; Length Pred. No. 0.94; 0; Mismatches 36; Indel	jth 870; dels 0; Gaps 0;	
Q		32 A	TTACTG	ACGACAA	AGAC	TTACTGACGACAGAGACCCGAGAGAGGGTCGTGGGGGGGCGCGGGGGGGG	TTGTTGTGCTGTGA 91	
qa		589 A	TTACAG	ATATCAA	CAAG	ALTACAGATATCAACAAGGCTTACCTAATCGTGGTGACCTTTCTGTTGAGCTGATGGGG	CTGTTGAGCTGATGGGG 648	
රි සි		92 C 649 C	GTGTTG GTGGTT	TCCAACC(TTGCCTGC	STAT	CGTGTTGTCCAACCGTATTATTCCGGA 118 		
RES	RESULT 2 US-09-107-4 : Sequence	SULT 2 -09-107-433-306 Secnence 306, A	106 Appli	cation [0/Sť	9107433		
	Patent No. GENERAL	NO. 68	00744 ORMATI	NO. 6800744 VAL INFORMATION:				
		TITLE	OF INV	APPLICANT: LYNN A UC TITLE OF INVENTION:	NUC SEQ	N: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO STREPTC	A DUBIN ACID STREPTOCOCCUS PNEUMONIAE FOR DIAGN	AGN
•••		NUMBER OF		SEOUENCES :	THE : 52	HERAPEUTICS 5206		

2005
5:40:18
8
Aug
Mon

<pre>sEQ ID NO 15584 LENGTH: 194915 DENGTH: 194915 CRGANISM: Human FEATURE: NAME/KEY: misc feature FEATURE: NAME/KEY: misc feature COTTON: (1)(194915) COTTON: (1)(194915) COTTON: (1)(194915) COTTON: (1)(194915) COTTON: (1)(194915) COTTON: (1)(194915) COTTON: (1)(194915) Best Local Similarity 60.8%; Pred. No. 10; Matches 48; CONSETVATION: 0, Mismatches 31; Indels 0; Gaps 0; Matches 48; CONSETVATIVE 0; Mismatches 31; Indels 0; Gaps 0; COTTON: 115691 AccACTCACACACACACACACACACACACACACACACACA</pre>	PATENT NO. 661233 PATENT NO. 6612339 GENERAL INFORMATION: APPLICANT: VENTER, J. Craig et al. APPLICANT: VENTER, J. Craig et al. TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED TILLE REFERENCE: CLOOO1307 CURRENT FILING DATE: 2000-014 PRIOR APPLICATION NUMBER: 60/231,768 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-00-08 PRIOR FILING DATE: 2000-00-03 PRIOR FILING DATE: 2000-00-0	UG-091949-ULD-66039 UG-07499-ULD-66039 CUERY Match 22.5%; Score 29; DB 4; Length 601; Best Local Similarity 58.8%; Pred. No.1.1; Matches 50; Conservative 0; Mismatches 35; Indels 0; Gaps 0; Matches 50; Conservative 0; Mismatches 35; Indels 0; Gaps 0; CY 23 ACTTCGACGATTACGACGACAGACAGACGACGAGAGACGACGAGAGATTATTGTTGT 89 Db 30 AGTGCTAGGATTACAGGCGAGAGACCACCGAGAGACCTCGACAGACTATTGTTG 82 CY 83 GTGCTGAGAGATTACAGGCGAGAGACCACCGACGAGACCTCGACAGACCTCGACAGACTATTGTT 89 OY 83 GTGCTGAGAGATTACAGGCGAGAGCCACCGACGACCAGACCTCGACAGACCTCGACAGACTATTTGTT 89 OY 83 GTGCTGAGGATTACAGGCGAGAGCCACCGACGAGACCCCCGAGACCCCGAGACCTCGACACCTCGACAGACCTAGACAGAC
CITY: Waltham STATE: Massachusetts COUNTRY: USA COUNTRY: USA COUNTRY: USA CONPUTER READABLE FORM: MEDIUM TYPE: CD/ROM ISO9660 COMPUTER: CUNKNOWN> OFERATION TYPE: CD/ROM ISO9660 CORRUTER: CUNKNOWN> COERATIER: CUNKNOWN> COERATIER: CUNKNOWN> COERATION NUMBER: CUNKNOWN> SOFTWARE: CUNKNOWN> CURRENT APPLICATION NUMBER: G0/095131 FILING DATE: 30-JUN-1998 PRIOR APPLICATION NUMBER: 60/085131 FILING DATE: 30-JUN-1998 PRIOR APPLICATION NUMBER: 60/085131 FILING DATE: 30-JUN-1998 PRIOR APPLICATION NUMBER: 60/085131 APPLICATION NUMBER: 60/085133 FILING DATE: J01/ 2, 1997 ATTORNET/AGENT INFORMATION: REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 60/011 TELECOMUNICATION INFORMATION: TELEROMUNICATION INFORMATION: TELEROMUNICATION INFORMATION: TELEROMUNICATION NUMBER: 40,489 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUMBER: 40,495 REFERENCE/DOCKET NUM	<pre>secuence characterstics: TYPE: mucleic acid TYPE: mucleic acid STRANDEDNESs: double STRANDEDNESs: double STRANDEDNESs: double STRANDEDNESs: double STRANDENESS: double STRANDENESS: double STRANDENESS: double STRANDENESS: double STRANDENES: double STRANDENESS: double MOLECULE TYPE: DNA (genomic) HYPOTHETICAL: NO AMTI-SENES: NO ORGANISM: Streptococcus pneumoniae FEATURE: NAME/KEY: misc feature NAME/KEY: misc feature LOCATION: (B) LOCATION 1885 SEQUENCE DESCRIPTION: SEQ ID NO: 306: US-09-107-433-306 Usery Match SecUENCE DESCRIPTION: SEQ ID NO: 306: Usery Match SecUENCE DESCRIPTION: SEQ ID NO: 306: Usery Match SecUENCE DESCRIPTION: SEQ ID NO: 306: Usery Match S1; CONSErvative 0; Mismatches 36; Indels 0; Gap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Gap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Gap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Gap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Cap8 0; Matches 51; CONSErvative 0; Mismatches 36; Indels 0; Mismatches 51; CONSERVAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAG</pre>	Db 604 #THACGGATATCAACAGGCTTAILT III III III IIII IIII IIIIIIIIIII

Mon Aug 8 15:40:18 2005 us-10-782-899-1_c	copy_472_600.rni Page 3
PRIOR FILING DATE: 2000-10-20 PRIOR APPLICATION NUMBER: 60/237,768 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-08 PRIOR FILING DATE: 2000-09-08 NUMBER OF SEQ ID NOS: 207012 SOFTWARE: FASTSQ for Windows Version 4.0 SEQ ID NO 13747 LENGTH: 264665 TYPE: DNA	1998-02-18 MBER: US 1998-07-27 : 33142 : 33142 as aerugin 22.23;
-09-949-016- Query Match Best Local S Matches 50	Similarity 2; Conservat ACGACAAAGAC(ACGATCAAGAC
0Y 23 ACTORAGATAAGACAAAGACAAAGACAAAGACGAAGAATGATGAGGATTATTATTATTGG 2 Db 52981 AGTGCTAGGATTACAGGCGTGGCGCGGGCCGGGCCGGGC	QY 99 TCCAACCGTATTATTCCGGACTAGTCAGCG 129 Db 1598 TTCAGCCTGCGCAAGCTCTTCCAGGTCGGCG 1628 RESULT 8 003 201 003 201
RESULT 6 US-09-252-991A-2602/c US-09-252-991A-2602/c Patent No. 6551795 GENERAL INFORMATION: APPLICANT: Marc J. RUDENfield et al. APPLICANT: Marc J. RUDENfield et al. TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE REFERENCE: 107196.136 CURRENT APPLICATION NUMBER: US/09/252,991A CURRENT FILING DATE: 1999-02-18 PCURRENT FILING DATE: 1999-02-18 PCURRENT FILING DATE: 1999-02-18	<pre>Sequence 2311, Application US/09252991A Patent No. 6551795 GENERAL INFORMATION: APPLICANT: Marc J: Rubenfield et al. APPLICANT: Marc J: Rubenfield et al. TITLE OF INVENTION: NGCLEIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: AERUGINOSA FOR DIAGNOSTICS AND THERAPEUTICS FILE REFERENCE: 107196.136 FILE REFERENCE: 107196.136 CURRENT APPLICATION NUMBER: US/09/252,991A CURRENT FILING DATE: 1999-00-18 PRIOR FILING DATE: 1999-00-18 PRIOR FILING DATE: 1999-00-18 PRIOR FILING DATE: 1999-07-27 PRIOR FILING DATE: 1998-07-27</pre>
PRIOR FILING DATE: 1998-02-18 PRIOR APPLICATION NUMBER: US 60/094,190 PRIOR FILION NUMBER: US 60/094,190 PRIOR FILION NUMBER 07 SEQ ID NOS: 33142 SEQ ID NO 2602 LENGTH: 1146 TYPE: DNA ORGANISM: Pseudomonas aeruginosa	OF SEQ ID NO [0 2311 [! 2868 SM: Pgeudomo: 991A-2311 tch
US-09-252-991A-2602 Query Match 22.2%; Score 28.6; DB 4; Length 1146; Best Local Similarity 57.1%; Pred. No. 2.1; Matches 52; Conservative 0; Mismatches 39; Indels 0; Gaps 0;	52; Conservative 0; Mismatch 9 Accarcaaccccccccccccccccccccccccccccccc
Qy 39 ACGACAAAGACCCCGACCGAGATGGTCGGGGTCTTTTTCTTGTGGTGCTGTGGCGTTT 98 D 91 1 1 1 1 1 1 1 D 906 ACGATCAAGACCCTGGCCGAACTCGGGGTGGTGGTGTTCCTGATGTTCTGCCTCGGCCTGGAG 847 Qy 99 TCCAACCGTATTATTCGGGACTAGTTCAGGC 129 Qy 99 TCCAACCGTATTATTCGGGACTAGTTCAGGC 129	
<pre>Db 846 frcAGCTGCGCAGCTCTCCAGGTGGGG 816 RESULT 7 RESULT 7 RESULT 7 RESULT 7 Sequence 2241, Application Us/09252991A Sequence 2241, Application Us/09252991A Sequence 2241, Application Us/09252991A REAL INFORMATION: APPLICATION: ALL INFORMATION: TITLE OF INVENTION: ALL AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGIC ACID AND AMINO ACID SEQUENCES RELATING TO PSEUDOMONAS TITLE OF INVENTION: ALLUGICOSA FOR DIAGNOSTICS AND THERAPEUTICS TITLE OF INVENTION: ALLUGICOSA FOR DIAGNOSTICS AND THERAPEUTICS TITLE OF INVENTION: ALLUGICOSA FOR DIAGNOSTICS AND THERAPEUTICS TITLE OF INVENTION NUCLER: US/09/252,991A CURRENT APPLICATION NUMBER: US/09/252,991A PPLICATION NUMBER: US/09/24,788 PPLICATION NUMBER: US/</pre>	RESULT 9 US-08-602-359A-31 Sequence 31, Application US/08602359A Patent No. 5942430 GENERAL INFORMATION: APPLICANT: ROBERTSON, Daniel E. APPLICANT: REID, John APPLICANT: REID, John APPLICANT: RID, John APPLICANT: RID, John APPLICANT: RINK, Steven APPLICANT: WARFIN, Pathony APPLICANT: WARRN, Patrick V. APPLICANT: WARRN, Patrick V. APPLICANT: WARRN, Patrick V. APPLICANT: KOSMOTKA, Anna TITLE OF INVENTION: ESTERASES NUMBER OF SEQUENCES: 42

2005
ω
н
0
4
••
S
Ч
œ
Aug
đ
Ā
Mon

current provided by the second provided UG-99-499-016-125432/c UG-99-499-016-125432/c F Sequence 125432, Application US/09949016 F Sequence 125432, Application US/0949016 F Sequence 125432, Application US/0949016 F Sequence 125432, Application US/0949016 TTLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TILLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TILE REFERENCE: CL001307 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT APPLICATION NUMBER: 60/241,755 FRIOR APPLICATION NUMBER: 60/241,755 FRIOR APPLICATION NUMBER: 60/231,498 FRIOR APPLICATION NUMBER: 60/231,498 FRIOR FILING DATE: 2000-10-20 FRIOR APPLICATION NUMBER: 60/231,498 FRIOR FILING DATE: 2000-10-03 FRIOR FILING FILING FRIOR FILING FILING FILING FILING FILING FILING FILI 80719 AAAGCCTCTGATTGAGGAAGGACCTTTCTACTTCTGCGCCGAGCTCTTGTC 80775 44 AAAGACCCCGGACCCGAGATGGTCGGGGGTCTTTTTGTTGTGGTGCTGTGACGTGTTGTC 100 407 AAAGCCTCTGATTGAGATGAGGAAGGTCTTCTACCTCTGGAGCTGTAAGGTCTTGTC 351 Gaps Gaps 20.6%; Score 26.6; DB 4; Length 139552; 66.7%; Pred. No. 97; ; 0 ö Length 601; Indels Indels 64 TCGGGGTCTTTTTGTTGTGGTGCTGTGTGTGTGTGTCCCAAC 104 596 ccrrcrrcrrcrrcradeccrecaccacacrercricrrcadic 556 19; 19; DB 4; 20.6%; Score 26.6; DI 66.7%; Pred. No. 8.6; sive 0; Mismatches 0; Mismatches NUMBER OF SEQ ID NOS: 207012 SOFTWARE: FastSEQ for Windows Version 4.0 Query Match 20.6 Best Local Similarity 66.7 Matches 38; Conservative Matches 38; Conservative Query Match Best Local Similarity ; ORGANISM: Human US-09-949-016-125432 US-09-949-016-15300 ORGANISM: Human US-09-949-016-15300 139552 SEQ ID NO 125432 SEQ ID NO 15300 601 TYPE: DNA TYPE: DNA LENGTH: LENGTH: RESULT 12 RESULT 11 g q 5 g 5 \mathcal{S} ö ö 656 ccatrtrtccactccctatrtccarccarccarccarcactrearacaccrccaactrearge 597 718 GACCTTGAGAACCTACCTCCTGCCTGATCATAACCGCCGGAATACGACCCGCTGAGAGAT 777 61 US-09-270-767-13705/c US-09-270-767-13705/c Sequence 13705, Application US/09270767 Fatent No. 6703491 GENERAL INFORMATION: APPLICANT: Homburger et al. APPLICANT: Homburger et al. APPLICANT: Homburger et al. TITLE OF INVENTION: FILE REFERENCE: FILE Reference: 7326-094 FILE REFERENCE: FILE Reference: 7326-094 FILE REFERENCE: FILE Reference: 7326-094 FILE REFERENCE: F1LE Reference: 7326-094 FILE REFERENCE: F1LE REFERENCE: 7326-094 FILE REFERENCE: F1LE REFERENCE: 7326-094 FILE REFERENCE: 7320 FILE REFERENCE: 7300 Gaps Gaps ö ; 0 Query Match 21.2%; Score 27.4; DB 4; Length 1160; Best Local Similarity 54.5%; Pred. No. 5.9; Matches 55; Conservative 0; Mismatches 46; Indels 0 22.0%; Score 28.4; DB 2; Length 936; 56.4%; Pred. No. 2.3; tive 0; Mismatches 41; Indels 778 CAAGGAGAAGTTTTCGGGCCAGATGCTGAGAAGAG 811 62 GGTCGGGGTCTTTTTTGTTGTGGTGCTGTGCGTG 95 E: FISH & RICHARDSON P.C. 4225 EXECUTIVE SQUARE, STE 1400 ZCUNTRI: ZUNTRI: ZUNTRI: ZUNTR READABLE FORM: MEDIUM TYPE: 3.5 INCH DISKETTE MEDIUM TYPE: 3.5 INCH DISKETTE MEDIUM TYPE: 1BM PS/2 OCRNUTER: IBM PS/2 OFERATING SYSTEM: MS-DOS SOFTWARE: WORD PERFECT 6.0 CONNUTER: WORD PERFECT 6.0 CURNENT APPLICATION DATA: APPLICATION NUMBER: US/08/602,359A FILING DATE: FEDRUARY 16, 1996 CLASSIFICATION NUMBER: US/08/602,359A FILING DATE: FEDRUARY 16, 1996 CLASSIFICATION NUMBER: US/08/602,359A FILING DATE: FEDRUARY 16, 1996 CLASSIFICATION NUMBER: US/08/002,359A FILING DATE: APPLICATION DATA: APPLICATION NUMBER: 38,347 APPLICATION NUMBER: 38,347 RILING DATE: APPLICATION NUMBER: 38,347 RILING DATE: APPLICATION NUMBER: 38,347 RILING DATE: TARIARY INFORMATION: TELEPHONE: 619-678-5099 INFORMATION FOR REQ ID NO: 31: SEQUENCE CHARACTERISTICS: LENGTH: 936 NUCLEOTIDES TRANDEDWESS SINGLE 100010/01060 / TYPE: DNA / ORGANISM: Drosophila melanogaster US-09-270-767-13705 TOPOLOGY: LINEAR MOLECULE TYPE: GENOMIC DNA Best Local Similarity 56.4 Matches 53; Conservative CORRESPONDENCE ADDRESS: CALIFORNIA : USA ADDRESSEE: US-08-602-359A-31 CITY: LA STATE: CJ COUNTRY: Query Match RESULT 10 g 8 B 8 q 6

ô

ö

<pre>PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-09-08 PRIOR FILING DATE: 2000-09-08 PRIOR FILING DATE: 2000-09-08 PRIOR FILING DATE: 20012 SOFTWARE: PastERD for Windows Version 4.0 SEC ID NO 143314 PRIOFH: 601 TYPE: DNA CORANISM: Human US-09-949-016-143314 Cuery Match 20.3%; Score 26.2; DB 4; Length 601; Bert Local Similarity 58.2%; Pred. No. 12; Bert Local Similarity 58.2%; Pred. No. 12; Matches 46; Conservative 0; Mismatches 33; Indels 0; Gaps 0; D 291 AGCTTCTCTGACCCCACGCCCACGAGATCTTTTGTTGTGGTGG 88 []] []] []] []] []] []] []] []] []] []]</pre>	RESULT 15 US-09-949-016-143485/c Sequence 143465, Application US/09949016 Facent No. 6812339 Facent No. 6812339 Facent No. 6812339 Facent No. 6812339 Facent No. 6812339 Facent No. 6812339 Facent NorMARION: FILLE OF INVENTION: WITH HUMAN DIGEASE, METHODS OF DETECTION AND USES THEREOF FILLE RFERENCE: CLOO1307 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT APPLICATION NUMBER: 60/231,755 FRICK APPLICATION NUMBER: 60/231,756 FRICK APPLICATION NUMBER: 60/231,756 FRICK APPLICATION NUMBER: 60/231,498 FRICK APPLICATION NUMBER: 60/231,498 FRICK APPLICATION NUMBER: 60/231,498 FRICK APPLICATION NUMBER: 60/231,498 FRICK FILING DATE: 2000-09-08 FRICK APPLICATION NUMBER: 60/231,498 FRICK FILING DATE: 2000-09-08 FRICK FILING FRICK FILING FRICK FILING FRICK FILING FRICK	<pre> TYPE: DATA TYPE: DATA TYPE: DATA TORGANISM: Human US-09-949-016-143485 Query Match Us-09-949-016-143485 Query Match Sole 20:3%; Score 26.2; DB 4; Length 601; Best Local Similarity 58.2%; Pred; No. 12; Best Local Similarity 58.2%; Pred; No. 12; Matches 46; Conservative 0; Mismatches 33; Indels 0; Gaps 0; Matches 46; Conservative 0; Mismatches 33; Indels 0; Gaps 0; Oy 29 AGCATTACTGAGGACAAAGACCCGACGAGATGATGGGGGGGG</pre>	Db 231 TGGCTTTTTGTTCACCTGT 213 Search completed: August 6, 2005, 01:33:33 Job time : 70.7196 secs
RESULT 13 US-09-312-762A-3/C Sequence 3, Application US/09312762A Patent No. 6552317 GENERAL INFORMATION: TITLE OF INVENTION: APPLICANT: MIA HOROWITZ ET AL. TITLE OF INVENTION: APPLICANT: MIA HOROWITZ ET AL. TITLE OF INVENTION: APPLICANT: APPLICANT: APPLICANT: TITLE OF INVENTION: APPLICANT:	CURRENT APPLICATION DATE: APPLICATION NUMBER: US/09/312,762A FILING DATE: CLASSIFICATION NUMBER: US/09/312,762A FILING DATE: CLASSIFICATION NUMBER: US/09/312,762A FILING DATE: 209/026,898 ATTORNEY/AGENT INFORMATION: NAME: FY1edman, Mark M. REGISTRATION NUMBER: 31,883 REFERENCE/DOCKET NUMBER: 31,883 REFERENCE/DOCKET NUMBER: 31,883 REFERENCE/DOCKET NUMBER: 31,66/10 TELECOMMUNICATION INFORMATION: TELECOMENCI OFTER: 33,883 TELECOMENCI OFTER: 33,883 TELECOMENCI OFTER: 33,883 TELECOMENCI OFTER: 33,883 TELECOMENCE CHARACTERISTICS: INFORMATION FOR SEQ ID NO: 3: SEQUENCE CHARACTERISTICS: LENGTH: 1470 TYPE: nucleic acid STRANDEDNESS: double STRANDEDNESS: double	Query Match20.5%; Score 26.4; DB 4; Length 14707; Best Local Similarity 54.0%; Pred. No. 42; Matches 54; Conservative 0; Mismatches 46; Indels 0; Gaps 0; Or 7 TCTGCTGGGATTACTTCGAGGATTACTACGGACATAGGACGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGA	RESULT 14 US-09-949-016-143314/C Sequence 143314, Application US/09949016 Sequence 143314, Application US/09949016 Sequence 14314, Application US/09949016 Fatent No. 6812339 GENERAL INFORMATION: APPLICANT: VENTER. J. Craig et al. APPLICANT: VENTER. J. Craig et al. APPLICANT: VENTER. J. Craig et al. TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TITLE REFERENCE: CL001307 FILE REFERENCE: CL001307 CURRENT APPLICATION NUMBER: US/0949,016 CURRENT FILLING DATE: 2000-04-14 PRIOR APPLICATION NUMBER: 60/241,755 PRIOR APPLICATION NUMBER: 60/2317,768

.

Page 5

/ Mon Aug 8 15:40:18 2005

.

۲

us-10-782-899-1_copy_472_600.rni

.

•

.

4

-

2005
15:40:19
ø
Aug
Mon
N

		Ö														.00	7	ST	- - - -	14	0	101	<u>م</u> ۵	- 10 -	4 (7	1	79 00	RT 07
		econds updates/sec		g 129								e a printed,		ion	ESSU025	EST7251	ESSU064	Blood E	4A3A-AE	ESSU067	ESSU056 ESSU077	ESSU022	ESSU033	ESSU037	ESSU028	Drosophil	1 3529 1 rswpb0	RC2-HT1
		s .		attccggactagttcagcg			68479088					e to have t being p ution.		Descripti	BG817831	CK279022	BM522110	CN808355	AJ282728 AV745983	BM522137	BM522043 BM522233	BG817800	BM522287	BG817854	BG817862 BG817630	AL108510 CA829999	CB816450 CK561781	CD326834 BF841751
an Ltd.		ime 130 alignme Million		ccggact			684					l by chance to h the result bein e distribution.																
5.1.6 Compugen		Search without 749.196		tatt		residues	eters:					predicted l score of tl total score	S															
version - 2005	<i>w</i> model	54:59 ; ; 3	472_600	ga	1.0	34700	en parameter		\$ summaries			results pre l to the sco of the tota	SUMMARIES		17831	79022	22110	1/086 08355	82728 45983	22137	22043	17800	22287	17905	17862 17630	CNS017UC CA829999	16450 61781	26834 41751
GenCore (c) 1993	using sw	22:1	COPY	gtagce	Gapext :	190321	сһовеп	8	0% 100% 45 Bur			fres alto a of		ŋ	÷ .													
Ger (c)	n Bj	:005	- 1-66	Jctco	, Gai		sfying	000000000	Match Match first		* * * * * * * * *	er of j equal lysis o		n DB	!											9 0 9 0		
ight	arch,	5, 2	8	ttct	Ĩ.o.	4 segs		0 2000(m Mat m Mat g fil			number an or e y analy		Length	09	9.6	47	0 N N	619	- 6 - 6	0 v 0 v	141	575	500	72	1101	48 65	139
Copyright	nucleic se	August	US-10-782 129	1 tgaccttctgctcgtagcg	IDENTITY Gapop 10	3423954	hits sat:	ength: ength:	: Minimum Maximum Listing	• 404	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	s the er tha red by		ouery Match L		24.0					23.4				23.4 23.4	23.4 23.1		23.1 22.9
	eic - nuc		score:		table:		number of	DB seq 1 DB seq 1	-processing:			Pred. No. if score greate and is deriv		Score	31.8	31	0	$ \circ \circ $	000	~ 0	00		00	00	00	30.2 29.8	50 50	տտ
	OM nucle	Run on:	Title: Perfect		Scoring	Searched	Total nu	Minimum Maximum	Post-pro		ua capase	Pr an an		Result No.		יי וי ני	1 41) U)))))					АА		с 19 20	~ ~	с 54 23

BG925693 HNCI3-1-B CN168123 AGENCOURT AL290039 TETERAOGON CD107403 AGENCOURT BJ305569 BL305960 BH321973 ESSU0510 H75502 18207 Lambd CG997493 ZMMBBD053 B1114606 602861984 A1613789 VH98f10.Y BE945901 UI-M-BZ0- CG813539 AMGNNUC.M W48020 mC91e03.T1 BE651993 UI-M-BZ0- CB802272 AMGNNUC.S CO059265 EBL k bre CC8059265 EBL k bre CC8052265 EBL k bre CC803272 AMGNNUC.N AA103400 m024f02.Y BE226847 U173403.Y CC72342944 UI-M-HW0-	SE	<pre>bp mENNA linear EST 22-MAY-2001 ary Sarcoptes scabiei cDNA clone dda; Chelicerata; Arachnida; Acari; Astigmata; Psoroptidia; Sarcoptoidea; Naslund, K. and Mattsson, J.G. Fis of the parasitic mite Sarcoptes (SWEDAR) swEDAR) e for the parasitic mite Sarcoptes (SWEDAR) e swEDAR) e for the parasitic mite Sarcoptes (SWEDAR) e for the parasitic mite Sarcoptes e sarcoptes for the parasitic mite Sarcoptes e for the parasitic mite for the parasitic mite e for the Uni-ZAP lambda vector find the Uni-ZAP lambda vector find the Uni-ZAP lambda vector find the Uni-ZAP lambda vector for the Uni-ZAP lambda vector</pre>		3; DB 4; Length 600; 13; ches 42; Indels 0; Gaps 0;
BG925693 CN168123 CN168123 CN0046SE BJ305960 BM219789 H75502 H75502 A1613789 B1114606 A1613789 B1114606 A1613789 BE51993 CB802272 CB802272 CB802272 CB802272 CB802272 CB802272 CB802272 CB802272 AA103400 BE226847 CC0739424	ALIGNMENTS	600 b 11brar e. 600 b mes; A mes; A malysi itute in nalysi itute strong		; Score 31.8; ; Pred. No. 13; 0; Mismatches
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		<pre>%. mRNA sequence ", mRNA sequence l G1:14188811 scabiei cDNA se; sarcoptifor se starcoptifor se; sarcoptifor as; sarcoptifor as; sarcoptes. 1 to 60 Matteson J.G. weterinary Inst Uppsala, Swede 0 (2001) cof to 120 wede 18 674120 veterinary Inst Uppsala, Swede 18 674120 as urtagonos as attagonos as attagonos constructed by firectionally (stratagene) 1 (stratagene) 1 (s</pre>		24.7%; 57.6%; ervative
		BG817831 BG817831 ESSU0253 S. Scc SAS0334 5', mt BG817831 G BG817831 G BG817831 G BG817831 G BG817831 G BG817831 G Sarcoptes scal Sarcoptes f Sarcoptes scal Sarcoptes scal Sarcoptes scal Sarcoptes f Sarcoptes f Sarco		ch 24. 1 Similarity 57. 57; Conservative
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		RESULT 1 BG817831/C LOCUS DEFINITION ACCESSION	ORIGIN	Query Match Best Local Matches 5

2005
15:40:19
ø
Aug
Mon

 KEYWORDS EST. SOURCE Solanum tuberosum (potato) SOURCE Solanum tuberosum OKGANISM Solanum tuberosum OKGANISM Solanum tuberosum Bukaryota; Viridiplantae; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; eudicotyledons; core eudicots; Bermatofs; lamiids; Solanales; Solanaceae; Solanum. REFFRENCE 1 (bases 1 to 932) AUTHORS Buell, C.R., Hart, A., Zismann, V., Karamycheva, S.A. and Baker, B. JOURNAL Unpublished (2003) 	COMMENT The Institute for Generat Research The Institute for Generat Research 9712 Medical Center Dr, Rockville, MD 20850, USA Email: potato-array@tigr.org Clones can be requested from the University of Arizona Genomics Institute via http://genome.arizona.edu/orders/. Seq primer: ArT TAG GTG ACA TAG. FEATURES Location/Oualifiers source 1932 forganism="Solanum tuberosum" /oultivate" Kennebec"	<pre>/db_xref="taxon:4113" /dione="POAB963" /cione="POAB963" /tissue_type="abiotic stress treated leaf and root tissue" /lab_host="TBH10B-TONA" /lab_host="DBH10B-TONA" /lab_host="DBH10B-TONA" /lab_host="DBH10B-TONA" /lab_host="DBH10B-TONA" /lab_host="abitato abiotic stress cDNA library" /lab_host="Totato abiotic stress cDNA library" /none_ivector: PCWNSport6.1; Site 1: EcoX1; Site 2: Not1; supplier: Solanum tuberosum var. Kennebec plants were grown from cuttings on a 16hr light/8 hr dark cycle at 25 c for 3-4 weeks. Abiotic stress conditions were applied to four constrants act of plants set 1; huolved saturation of four constrants of plants set.</pre>	the soil with 150 mM Nacl and tissues were harvested at following application of the salt stress (laaves: 2hr, 6hr, 12hr, 12hr, 14, 24, and 44; roots:2hr, 6hr, 12hr, and 24). Set 2 were grown under the standard conditions and then were water stressed by withdrawal of further watering applications. Drough stressed plants were harvested after cessation of a watering (leaves: 3d, 5d, and 7d; roots:3d and 5d). Set 3 were grown under the standard conditions and then were cold stressed by placement at 4 C. Cold stressed leaves were harvested at 2 hr, 6 hr, 12 hr, 1 d, and 4d and roots were harvested at 2 hr, 6 hr, 12 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were harvested at 2 hr, 6 hr, 12 hr, 1 d, add and word were harvested at 2 hr, 6 hr, 12 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were havested by placement at 5 C. Heat stressed leaves were harvested at 2 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were havested at 2 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were havested at 2 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were havested at 2 hr, 1 d, 2d. Set 4 were grown under the standard conditions and then were havested at 2 hr, 1 d, 2d br, 1 d, and 4d. RNA was isolated at 6 hr, 2 hr, 1 d, and stressed roots were harvested at 6 hr, 2 hr, 1 d, and stress was pooled to construct the cNA library. RNA sample.	ORIGIN Query Match 24.0%; Score 31; DB 7; Length 932; Best Local Similarity 57.9%; Pred. No. 27; 40; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 40; Indels 0; Gaps 0;	QY 5 CTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACGAGCGAG	RESULT 4 BM522110/c BM522110 429 bp mRNA linear EST 19-FEB-2002 LOCUS BM522110/c S.scabiei cDNA library Sarcoptes scabiei cDNA clone DEFINITION ESSU0647 S.scabiei cDNA library Sarcoptes scabiei cDNA clone ACCESSION BM522110 ACCESSION BM522110 GI:18706032 VERSION BM522110.1 GI:18706032
Qy2CACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACCGAGCGGAGAT61Db1 1 1 1 1 1 Db423GACCATGAGGAGCGTGCACTGAGGAGCCCCAATGAGAGAGCCCAATGAGAAT364Qy62GGTCGGGGCTCTTTTGTTGTGGGGGCGGATGAGGAGCCCAATGAGAAT364Db363GTTTAGGGCATCTTTGTGGGGGCTGAAGGAGCCCAATGAGAATGTTTC325Db363GTTTAGGGCATCTTGGGAGGTCTTTTGCAATGTTTTC325	RESULT 2 CF927863 LOCUS DEFINITION 1458F02.y1 SiEP Mus musculus CDNA 5' similar to TR:Q9UJZ5 Q9UJZ5 DEFINITION 14558F01.y1 SiEP Mus musculus CDNA 5' similar to TR:Q9UJZ5 Q9UJZ5 ACCESSION CF927863.1 GI:38274486 VERSION CF927863.1 GI:38274486 KESTON CF927863.1 GI:38274486 SOURCE SOURCE ORGANISM Mus musculus (house mouse) ORGANISM Mus musculus (house mouse) DRGANISM Mus musculus (house mouse) SOURCE ORGANISM Mus musculus (house mouse)	REFERENCE 1 (bases 1 to 460) AUTHORS Tidwell, R. Clifton, S., Marra, M., Hillier, L., Pape, D., Martin, J., Wylie, T., Theisino, B., Bowers, Y., Gibbons, M., Ritter, E., Bennet, J., Ronko, I., Tasgareishviil, R., Belaygorod, L., Grow, A., Maguire, L., Naterston, R. and Wilson, R. TITLE WashU Stem cell EST Project JOURNAL Unpublished (2002) COMMENT WashU, Human Genetics Division	<pre>mainIngton University School of Factorus mainIngton University School of Factorus Library constructed by: Korshunova Y. and Lovett M. DNA sequencing by: Washington University Genome Sequencing Center For information on obtaining a clone please contact: Rose Tidwell (rridwell@genetics.wusil.edu) seq primer: -40RP from Gibco High quality sequence stop: 460. FEATURES 1460 forganiam="Mus musculus" /mol type="maNN" /mol type="maNN" /mol type="maNN" /mol type="maNN" /mol type="maNN" /db zref="taxon:10090" /db zref="taxon:10090" /liseue type="maNN] /lish="Sign" /clone lib="Sign" /clone lib="Sign" /clone lib="type"" /clone lib="type"" /clone lib="type" /clone lib="type"</pre>	Gans	 acardescerected and acceleration accelerati	RESULT 3 CX279022/C CX279022 932 bp mRNA linear EST 03-AUG-2004 LOCUS EST725100 potato abiotic stress CDNA library Solanum tuberosum CDNA DEFINITION EST725100 potato abiotic stress CDNA library Solanum tuberosum CDNA ACCESSION CX279022 5 end, mRNA sequence. VERSION CX279022.1 GI:39836000

/ Mon Aug 8 15:40:19 2005

.

ł

<pre>Tel: 314 286 1800 Fax: 314 286 1810 Fax: 314 286 1810 Email: mouseest@watson.wustl.edu This clone is available royalty-free through LLNL ; contact the IMAGE Consortium (info@image.llnl.gov) for further information. MGI:523011 Seq primer: -28m13 rev2 ET from Amersham High quality sequence stop: 332. FEATURES FEATURES</pre>	<pre>source 1524</pre>	<pre>vas primed with ā Not I - oligo(dT) primer [5' TGTTACGAATCTGAAGTGGGAGGGGGGCGCCTTTTTTTTT</pre>		Qy 48 ACCCCGACGACATGGTGGGGGTCTTTTGTGTGGGGGGTGTGCGACCGT 107 bb 36 ATCCCTCACCTCCTGGGGGGTGTGGTGTTCTTGTGGGGCTGTAACCTGCTGGCCCACTTC 95 Qy 108 ATTATTCCGGACTAGTTCGGG GGTGTGGGGCTGTTGGGGGCTGTAACCTGCTGGCCCACTTC 95 Db 96 ATCATTCCGGACTAGTTCGGG 129 Db 96 ATCATGCTGCTGCGGG 117	υz	Σ	AUTHORS Wang, C.S., Hu,G. and St. Leger,K.J. TITLE Gene expression profiling of Metarhizium anisopliae grown under different conditions: mechanisms of fungal opportunism JOURNAL Unpublished (SO04) COMMENT Contact: Wang CS COMMENT Department of Entomology University of Maryland 4112 Plant Sciences Building, College Park, MD 20742, USA Email: evang4@und.edu	Seq primer: M13 Reverse. FEATURES Seq Diocation/Qualifiers source 1938 /organism="MENA" /mol_type="mENA" /db_rtef="taxon:5530"
<pre>SOURCE Sarcoptes scabiei ORGANISM Sarcoptes scabiei Evkaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Acari; Bukaryota; Metazoa; Astigmata; Psoroptidia; Sarcoptoidea; Acariformes; Sarcoptiformes; Astigmata; Psoroptidia; Sarcoptoidea; Sarcoptidea; Sarcoptes. REFERENCE 1 (Dases 1 to 429) AUTHORS Ljunggren, E.L., Nilsson, D., Naslund, K. and Mattsson, J.G. Acarific Expressed sequence tag analysis of the parasitic mite Sarcoptes acabiei</pre>	JOURNAL Unpublished (2001) COMMENT Contact: Mattsson J.G. Department of Parasitology (SWEPAR) National Veterinary Institute SE-751 89 Uppsala, Sweden Tel: +46 18 674120 Fax: +46 18 674120 Control of 17495754 [pir]T19130 hypothetical protein C09F9.2	<pre>FEATURES High quality sequence stop: 429. FEATURES Location/Qualifiers 1.429 source /organism="sarcoptes scabie!" /nol_type="mRNA" /db_tref="taxon:52283" /db_tref="taxon:52283" /db_tref="taxon:52283" /olone="fib="sarcoptes scabie! cDNA library" /note="The Sarcoptes scabie! cDNA library" /note="The Sarcoptes scabie! cDNA library" /note="The Sarcoptes scabie! cDNA library"</pre>	<pre>from poly(A) + RNA by oligo d(T) priming, size-selected and directionally cloned into the Uni-ZAP lambda vector (Stratagene). The primary library was amplified on XLI-Blue MRF' cells."</pre>	ORIGIN OUEry Match 23.9%; Score 30.8; DB 4; Length 429; Best Local Similarity 57.1%; Pred. No. 27; Matches 56; Conservative 0; Mismatches 42; Indels 0; Gaps 0; Qy 2 GACCTTCTGCTCGTAGCGATTACTTCGAGGATACTGACGACAAAGACCCCGAGGAT 61 	OY 62 GGTCGGGGTCTTTTTGTTGTGGGGCGGCGGGGGGGGGG	RESULT 5 AAS17086 AAS17086 524 bp mRNA linear EST 14-JUL-1997 LOCUS AAS17086 AAS17086 DEFINITION Wh98f10.rl Barstead mouse myotubes MPLRB5 Mus musculus CDNA clone NMAGE:902347 5', mRNA sequence. ACCESSION AAS17086.l GI:2256675 VERSION AAS17086.l GI:2256675	NISM NCE ORS	TITLE The WashU-HHMI Mouse EST Project JOURNAL Unpublished (1996) COMMENT Contact: Marra M/Mouse EST Project WashU-HHMI Mouse EST Project Washington University School of MedicineP 4444 Forest Park Parkway, Box 8501, St. Louis, MO 63108

S
0
0
200
ი
н
••
40
••
ŝ
- 1
ω
Aug
Мол

Db 184 TGGCAGCAATTTAACGGCGCACTACTAACGGTAACGGACCAACACGTAATGTCCCCGGGGT 125 Dp 72 TTTTTGTTGTTGTGGTGCTGGTGGTGTTGTCCCAACGGTATTATTCCGGGGCT 120 0y 72 TTTTTGTTGTGGTGCTGGTGGTGGTGTTGTCCCAACGGTATTATTCCGGGGCT 120 124 CTITTTTTTGTTTGTTTGGTGGGGGGGGGGGGGGGGGGG		<pre>AUTHORS Song,H., Peng,Y., Gu,Y., Yang,Y., Gao,G., Xiao,H., Xu,X., Li,N., Qian,B., Liu,F., Qu,J., Fu, Gao,X., Cheng,Z., Xu,Z., Zeng,L., Xu,S., Gu,W., Tu,Y., Jia,J., Fu, Gao,X., Chen,J., Lu,G., Ye,M., Zhang,Q., Han,Z., Chen,Z., Hu,R. and Chen,J., Lu,G., Ye,M., TITLE Homo sapiens NPA library cDNA clones JOURNAL Unpublished (2000) COMMENT Contact: Qinghua Zhang Shanghai Institute of Endocrinology, Rui-Jin Hospital 197 Rui-Jin IT Road, Shanghai 200025, P. R. China Tel: 86-21-64732045 (ex.663332) Fax: 86-21-6473206</pre>	<pre>Bmail: mbshi@ms.stn.sh.cn This clone is available at Shanghai Hematology Institute in Shanghai. Chinese National Human Genome Center at Shanghai is1 Guo Shoujing Road, Zhangjiang Hi- Tech Park, Pudong. is1 Goation/Qualifiers source /organism="Homo sapiens" /mol troe="mRNN"</pre>	<pre>/dr_zref="taxon:9606" /clone="NPAASG08" /clone="NPAASG08" /tissue_type="pituitary" /dev stege="Adult" /dev stege="Adult" /dev stege="Adult" /dote="Vector: pBluescript sk(-); Site_1: EcoRI; Site_2: XhoI" ORIGIN</pre>	Query Match23.7%; Score 30.6; DB 1; Length 677;Best Local Similarity 53.8%; Pred. No. 34;Dest Local Similarity 53.8%; Pred. No. 34;Matches 63; Conservative 0; Mismatches 54; Indels 0; Gaps 0;Qy2 GaccrrcrGcrGGATACTTCGAGGATTACTGAGGACACAAAGACCCCGACGGAGAT 61Db436 GacCGCTCCTGGAATCTCCCCGCGCGGGCCTTCTCGAAAGACCCCGAGGGTCCTGAGAG 495Qy62 GGTGGGGGCTTTTTGTTGTGGTGCTGTGGGGCTTGCCAAGCGTATTATTCCGGA 118Db496 CCTCTGGGGCGCGTTTGTTGTGTGGTGCTGTGAGGGTCCTGAAGGTCCTTAAGATAATGGGG 552Db496 CCTCTGGGCACGTTTGTTGTGTGGTGCTGTAAGTCAAAGCTTAAGATAATGGG 552	RESULT 9 BM522137/C BM522137 LOCUS BM522137 DEFINITION ESSU0674 S.Scabiei CDNA library Sarcoptes scabiei CDNA clone ASSU0677 S.SU0674 S.Scabiei CDNA library Sarcoptes scabiei CDNA clone ACCESSION BM522137 G1:18706191 KEYWORDS EST. SOURCE Sarcoptes scabiei ORGANISM Sarcoptes scabiei
<pre>/clone="B819" /clone="B819" /clone_lib="Metarhizium anisopliae ARSEF 2575 from insect blood" - Note="Vector: pCMV.SPORT6.1; Metarhizium anisopliae was from in insect haemolymph for 24 hours. A cDNA library was constructed in the vector pCMV.SPORT6.1" ORIGIN</pre>	Query Match23.94; Score 30.8; DB 7; Length 938;Best Local Similarity 63.54; Pred. No. 31;Matches47; Conservative0;Matches77; Conservative0;777 </td <td>RESULT 7 AJ282728/c LOCUS LOCUS DEFINITION 4A3A-ABB-D-05-R Anopheles gambiae immune competent 4A3A Anopheles gambiae cDNA clone 4A3A-ABB-D-05, mRNA sequence. ACCESSION AJ282728. GI:6930607 VERSION AJ282728.1 GI:6930607 KEYWORDS EST. SOURCE Anopheles gambiae (African malaria mosquito) ORGANISM Anopheles gambiae</td> <td><pre>Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Nematocera; Culicoidea; Anopheles. AUTHORS Dimopoulos,G., Casavant,T.L., Chang,S., Scheetz,T., Roberts,C., AUTHORS Dimopoulos,G., Casavant,T.L., Benes,V., Bork,P., Ansorge,W., Soares,M.B. Donohue,M., Schultz,J., Benes,V., Bork,P., Ansorge,W., Soares,M.B. TITLE Anopheles genbiae filot gene discovery project: identification of ADDALE ANDON AND States and Matatos, F.C.</pre></td> <td> MOURNAL Proc. Natl. Acad. Sci. U.S.A. 97 (12), 6619-6624 (2000) JOURNAL Proc. Natl. Acad. Sci. U.S.A. 97 (12), 6619-6624 (2000) MEDLINE 20300950 PUBMED 10841561 COMMENT Fortact: Dimopoulos G COMMENT Fotis C. Kafatos laboratory Buropean Molecular Light Laboratory FEATURES Location/Qualifiers </td> <td><pre>source 1199</pre></td> <td>CDNA. The 4A3A is a directionally cloned and normalized CDNA library that was constructed from the 43A cell line oligor primed CDNA according to: Bonaldo, Lennon & Soares (1996) : Normalization and Subtraction: Two approaches To Facilitate Gene Discovery, Genome Research 6, 791-806." Query Match 23.7%; Score 30.6; DB 1; Length 199; Best Local Similarity 55.0%; Pred. No. 28; Matches 60; Conservative 0; Mismatches 49; Indels 0; Gaps 0; Query 12 TCGTAGCGATTACTTCGAGGACAAAGACCCCGAGGATGGTCGGGGTC 71</td>	RESULT 7 AJ282728/c LOCUS LOCUS DEFINITION 4A3A-ABB-D-05-R Anopheles gambiae immune competent 4A3A Anopheles gambiae cDNA clone 4A3A-ABB-D-05, mRNA sequence. ACCESSION AJ282728. GI:6930607 VERSION AJ282728.1 GI:6930607 KEYWORDS EST. SOURCE Anopheles gambiae (African malaria mosquito) ORGANISM Anopheles gambiae	<pre>Eukaryota; Metazoa; Arthropoda; Hexapoda; Insecta; Pterygota; Neoptera; Endopterygota; Diptera; Nematocera; Culicoidea; Anopheles. AUTHORS Dimopoulos,G., Casavant,T.L., Chang,S., Scheetz,T., Roberts,C., AUTHORS Dimopoulos,G., Casavant,T.L., Benes,V., Bork,P., Ansorge,W., Soares,M.B. Donohue,M., Schultz,J., Benes,V., Bork,P., Ansorge,W., Soares,M.B. TITLE Anopheles genbiae filot gene discovery project: identification of ADDALE ANDON AND States and Matatos, F.C.</pre>	 MOURNAL Proc. Natl. Acad. Sci. U.S.A. 97 (12), 6619-6624 (2000) JOURNAL Proc. Natl. Acad. Sci. U.S.A. 97 (12), 6619-6624 (2000) MEDLINE 20300950 PUBMED 10841561 COMMENT Fortact: Dimopoulos G COMMENT Fotis C. Kafatos laboratory Buropean Molecular Light Laboratory FEATURES Location/Qualifiers 	<pre>source 1199</pre>	CDNA. The 4A3A is a directionally cloned and normalized CDNA library that was constructed from the 43A cell line oligor primed CDNA according to: Bonaldo, Lennon & Soares (1996) : Normalization and Subtraction: Two approaches To Facilitate Gene Discovery, Genome Research 6, 791-806." Query Match 23.7%; Score 30.6; DB 1; Length 199; Best Local Similarity 55.0%; Pred. No. 28; Matches 60; Conservative 0; Mismatches 49; Indels 0; Gaps 0; Query 12 TCGTAGCGATTACTTCGAGGACAAAGACCCCGAGGATGGTCGGGGTC 71

-

0

protein precursor - sea urchin [Strongylocentrotus purpuratus] seq primer: T3 primer High quality sequence stop: 528. FEATURES Location/Qualifiers source 1. 528 /organism="Sarcoptes scabie!" /mol_type="mRNA" /mol_type="mRNA" /mol_type="mRNA" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:52283" /db_rref="raxon:5283" /db	Query Match 23.4%; Score 30.2; DB 4; Length 528; Best Local Similarity 56.6%; Pred. No. 45; Matches 56; Conservative 0; Mismatches 43; Indels 0; Gaps 0; Qy 2 GaccrrcrGcTcGTGGGATTACTGGGCATTACTGAGGACAAAGACCCGAACGAGAT 61 [1] 1 1 1 1 1 1 1 1 1	BEFINITIONBS52233539 bpmRNAlinearEST 19-FEB-2002LOCUSESSU0771S.scabiei cDNA ibbrary Sarcoptes scabiei cDNA cloneSAS0008 5', mRNA sequence.SAS0008S', mRNA sequence.SAS0008 5', mRNA sequence.ACCESSIONBM522233.1GI:18706995ACCESSIONBM522233.1GI:18706995KEYWORDSESTSarcoptes scabieiSOURCESarcoptes scabieiActional statemanSOURCESarcoptes scabieiActional statemanSOURCESarcoptes scabieiActional statemanSOURCESarcoptes scabieiActional statemanSOURCESarcoptes scabieiActional statemanSARTYOTA, MELAZOA ALIDADAA; Acari;Acariformes; Astigmata; Psoroptidia; Sarcoptodea;REFERENCE1(bases 1 to 53)AUTHORSLiumggren, E.L., Nilsson, D., Naslund, K. and Mattsson, J.G.JOUNNALUnpublished (2001)JOUNNAL	e U	<pre>/db xref="taxon:52283" /clone="SAS0908" /clone="sAS0908" /note="The Sarcoptes could intege library was /note="The Sarcoptes scabiei mixed lifestage library was constructed by Jens G Matteson. CDNAs were synthesized from poly(A)+ RNA by oligo d(T) priming, size-selected and directionally cloned into the Uni-ZAP lambda vector (Strategene): The primary library was amplified on XLLBlue MRF' cells."</pre>
<pre>Eukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Acari; Acariformes; Sarcoptiformes; Astigmata; Psoroptidia; Sarcoptoidea; Sarcoptidae; Sarcoptes arcoptidae; Sarcoptus i (bases 1 to 494) AUTHORS i (bases 1 to 494) AUTHORS i (bases 1 to 494) AUTHORS i (bases 1 to 494) Expressed sequence tag analysis of the parasitic mite Sarcoptes scabiei JOURNAL Unpublished (2001) COMENT Contact: Mattson J.G. Department of Parasitology (SWEPAR) National Veterinary Institute SE-751 89 Uppsaid, Sween Fax: 446 18 Exar: 446 18 Email: jens.mattsson@sva.se Smail: jens.mattsson@sva.se Smail: jens.mattsson@sva.se Smail: jens.mattsson@sva.se</pre>	<pre>FBATURES location/Qualifiers to the primer: T3 primer figh quality sequence stop: 494. FBATURES location/Qualifiers locat</pre>	ORIGIN 23.4%; Score 30.2; DB 4; Length 494; Query Match 23.4%; Score 30.2; DB 4; Length 494; Best iocal Similarity 56.6%; Pred. No. 44; 0; Gaps 0; Matches 56; Conservative 0; Mismatches 43; Indels 0; Gaps 0; QV 2 GACCTTCRGCTGGTATACTTCCGGGATTACTGAGAAAGACCCGACGAGAT 61 Db 135 GACCATGAGGAGTTACTTCCGGGCATGAACGACGACGAGAGAGGGCCCAATGAGAAT 76 QY 62 GGTCGGGGGTCTTTTGTTGTGGGGGGTGTTGTCGGGGGGG	BM522043/C LOCUS BM522043 DEFINITION BM522043 DEFINITION BSSU0560 S.Scabiei CDNA library Sarcoptes scabiei CDNA clone SAS0706 5', mRNA sequence. ACCESSION BM522043.1 G1:18705601 KEYWORDS BM522043.1 G1:18705601 KEYWORDS Sarcoptes scabiei CORGANISM BM522043.1 G1:18705601 KEYWORDS Sarcoptes scabiei CORGANISM Sarcoptes scabiei CALE Sarcoptes Scabiei CALE Sarcoptes Scabiei CALE Sarcoptes Scabiei CALE Sarcoptes Sarcoptes. AUTHORS Sarcoptes E.L., Nileson, D., Naslund, K. and Mattsson, J.G. TILLE Sarcoptes Sarcoptes Sarcoptes Sarcoptes. Sarcoptes Sarcoptes. Sarcopted Sequence tag analysis of the parasitic mite Sarcoptes	JOURNAL Unpublished (2001) Unpublished (2001) COMMENT Contact: Mattsson J.G. Department of Parasitology (SWEPAR) National Veterinary Institute SE-751 89 Uppsala, Sweden Tel: +46 18 674120 Fax: +46 18 Samil: jens.mattsson@sva.se Email: jens.mattsson@sva.se Similar to gi[7512096[pir]T17405 scavenger receptor cysteine-rich

.

~ Mon Aug 8 15:40:19 2005

\$

Page 5

.

2005
15:40:19
Aug 8 1
Mon A

23.4%;	Similarity 6; Conservat GACCTTCTGCTC GACCATGAGGAGGAG	62 GGTCGGGGGTCTTTTTGTTGTGGGGGGGGGGGGGGGGG	BG817800 546 bp mRNA linear EST 22-MAY-2001 ESSU022 S.scabiei cDNA library Sarcoptes scabiei cDNA clone BG817800 G1:14188780 EST 2001 G1:14188780 EST 2001 G1:14188780 Sarcoptes scabiei Sarcoptes scabiei Sarcoptes scabiei Sarcoptes scabiei Sarcoptes scabiei Sarcoptes scabiei Sarcoptidae; Sarcoptiormes; Astigmata; Psoroptidia; Sarcoptoidea;	<pre>1 (bases i to 546) Ljunggren.E.L., Nilsson,D., Naslund,K. and Mattsson,J.G. Expressed sequence tag analysis of the parasitic mite Sarcoptes scabiei Unpublished (2001) Contact: Mattsson J.G. Department of Parasitology (SWEPAR) National Veterinary Institute SE-751 89 Uppsala, Sweden Tel: +46 18 674120</pre>	<pre>Fax: +46 18 Email: jens.mattsson@sva.se Email: jens.mattsson@sva.se Egg primer: T3 pirmer Location/Qualifiers 1. 546 /organise="Sarcoptes scabie!" /mol_type="mRNA" /mol_type="RNA" /mol_</pre>		h 23.4%; Score 30.2; DB 4; Length 546; Similarity 56.6%; Pred, No. 45; 56; Conservative 0; Mismatches 43; Indels 0; Gaps 0;	2 GACCTTCTGCTGGTAGCGATTACTTGGGGCATACTGACGACGAGCGGGGGAT 61 	62 GGTCGGGGTCTTTTTGTTGTGGGGGTGCTGTGGCGTGTTGT	BM522287 572 bp mRNA linear EST 19-FEB-2002
ORIGIN Query Match	Best Local Matches 5 Qy 2 Db 402	Qy Db	RESULT 12 BG817800/c LOCUS DEFINITION ACCESSION ACCESSION KERSION KERSION SOURCE SOURCE SOURCE CRANISM	REFERENCE AUTHORS TITLE JOURNAL COMMENT	FEATURES Sourc	ORIGIN	Query Match Best Local S Matches 56	oy B	yo da	RESULT 13 BM522287/C LOCUS

VEKSLON BG81/916.1 G1:14188895 KEYWORDS EST. SOURCE Sarcoptes scabiei ORGANISM Sarcoptes scabiei ORGANISM Sarcoptes scabiei Acariformes; Arthropoda; Chelicerata; Arachnida; Acari; Acariformes; Sarcoptiformes; Astigmata; Psoroptidia; Sarcoptoidea. REFERENCE 1 (bases 1 to 577)
--

Y.

/clone lib-"S.scabiei cDNA library" /note="The Sarcoptes scabie! mixed lifestage library was constructed by Jens G Mattsson. CDNAs were synthesized constructed by Jens G Mattsson (T) priming, size-selected and directionally cloned into the Uni-ZAP lambda vector (Strategnes). The primary library was amplified on XL1-Blue MRF' cells." BG817905 52-MAY-2001 ESSU0327 S.scabiei cDNA library Sarcoptes scabiei cDNA clone ESS0423 5', mRNA sequence. Sarroptes scabiei Sarroptes scabiei Barroptes scabiei Bukaryota; Metazoa; Arthropoda; Chelicerata; Arachnida; Acari; Rarroptides; Sarcoptiformes; Astigmata; Psoroptidia; Sarcoptoidea; Sarroptidae; Sarcoptes. 1 (bases 1 to 599) 1 (bases 1 to 590) 1 (bases 1 to ö 423 GACCATGAGGACGTGCACATGTTCTCGGGCATGAACGACCACAAGGAGCCCAATGAGAAT 364 2 GACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACAAAGACCCCGGACCGAGAT 61 Email: jens.mattsson@sva.se Similar to pir[T17405 scavenger recepto r cysteine-rich protein precursor - sea urchin (Strongylocen trotus purpuratus). Seq primer: T3 primer High quality sequence stop: 599. Location/Qualifiers National Versinary Institute SE-751 89 Uppsala, Sweden Tel: +46 18 674120 Fax: +46 18 674120 Email: jens.mattsson@sva.se Email: jens.mattsson@sva.se Similar to pir[T17405 scavenger recepto r cysteine-rich protein similar to pir[T17405 scavenger recepto r cysteine-rich protein Seq primer: T3 primer High quality sequence stop: 577. High quality sequence stop: 577. Gaps ö Query Match 23.4%; Score 30.2; DB 4; Length 577; Best Local Similarity 56.6%; Pred. No. 45; Matches 56; Conservative 0; Mismatches 43; Indels 1 62 GGTCGGGGTCTTTTTGTTGTGGTGCTGTGACGTGTTGTC 100 363 Griradedecarcrereridadererrridecaardrerrid 325 1. .599 /organia="Sarcoptes scabiei" /mol_type="mRNA" /db_xref="taxon:52283" /organism="Sarcoptes scabiei" Department of Parasitology (SWEPAR) (SWEPAR) Contact: Mattsson J.G. Department of Parasitology (SWE) National Veterinary Institute SE-751 89 Uppsala, Sweden Tel: +46 18 674120 Fax: +46 18 /mol_type="mRNA" /db_xref="taxon:52283" /clone="SAS0437" /clone="SAS0423" BG817905 BG817905.1 GI:14188885 Unpublished (2001) L. .577 KEYWORDS SOURCE ORGANISM source source RESULT 15 BG817905/c DEFINITION REFERENCE AUTHORS TITLE ACCESSION VERSION JOURNAL FEATURES FEATURES COMMENT ORIGIN LOCUS å δ g 8

/clone lib="S.scabie! CDNA library" /note="The Sarcoptes scabie! mixed lifestage library was constructed by Jens G Mattsson. CDNAs were synthesized from poly(A) + RNA by oligo d(T) priming, size-selected and directionally cloned into the Uni-ZAP lambda vector (Strategene). The primary library was amplified on XL1-Blue MRF' cells." õ 423 caccargadoaccargererereredocargadeaccaccaccacadedeace 364 5 2 GACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACGACCCCGGACCGGAGAT Gaps .. 0 DB 4; Length 599; 43; Indels 62 GGTCGGGGTCTTTTTTGTTGTGGTGCTGTGACGTGTTGTC 100 GTTTAGGGCATCTGTGGTGAGGTCTTTTGCAATGTCTTC 325 23.4%; Score 30.2; DE 56.6%; Pred. No. 46; rative 0; Mismatches 56; Conservative Best Local Similarity 363 Query Match Matches ORIGIN 8 q 8 å

Search completed: August 6, 2005, 01:30:37 Job time : 1312.69 secs

÷

.

.

18 2005
15:40:
Aug 8
Mon

•

ş

.

ume 1018.74 Seconds Ailgnments) Aillion cell updates/sec	soggastagttsagsg 129			9416466				y chance to have a e result being printed, distribution.	Description	AB072446 Bifidobac BD144660 Drug for AX402788 Sequence AX492788 Sequence AX553955 Sequence AX553955 Sequence AX553955 Sequence AX5138545 Magnaport AC138542 Magnaport AC138542 Magnaport AC138542 Magnaport AC138542 Magnaport AC138545 Streptoco AC036375 Streptoco AC096555 Stattus no AL93557 Lattus no AL9355707 Rattus no AL935257 Lattobaci C0363747 Sequence CO1tinuation (22 o
ng sw model 21:21:24 ; Search (without 6135.749	72_600	Gapext 1.0	, 24227607955 residues	ing chosen parameters:	00000	ch 0% ch 100% st 45 summaries	•	of results predicted b qual to the score of th sis of the total score	SUMMARIES DB ID	<pre>1 AB072446 6 BD144660 1 AX032788 6 AX553955 6 AX553955 6 AX553955 7 CNS07EGA 8 AK119844 2 AC138542 2 AC138544 2 AC138544 2 AC138544 2 AC138545 2 AC138545 2 AC138545 2 AC13557 7 A125707 1 AF094575 6 C0363747 1 AL932557 6 C0363747 1 AL932257 </pre>
search st 5,	US-10-782-89 129 1 tgaccttctg	IDENTITY NUC Gapop 10.0,	4708233 segs	hits satisfy	00	: Minimum Maximum Listing	GenEmbl: * 1: gb ba: * 2: gb htg: * 4: gb om: * 5: gb ov: * 5: gb ov: * 7: gb ph: * 11: gb pt: * 11: gb pt: * 13: gb un: * 14: gb un: * 14: gb un: *	che numbe than or 1 by anal	\$ Query Match Length	
nucleic - on:	itle: erfect score: equence:	coring table:	earched:	otal number of	DB seq DB seq	-processing	atabase .	Pred. No. score gre and is de	esult No. Score	c 2 129 c 3 129 c 5 129 c 6 3 129 c 6 3 129 c 6 32.6 c 9 31.4 c 10 31.4 12 31.4 12 31.4 c 15 30.8 c 15 30.8 c 15 30.8 c 16 30.8 c 17 30.8 c 17 30.8 c 18 30.8 c 18 30.8 c 18 30.8 c 19 30.8 c 19 30.8 c 19 30.8 c 19 30.8 c 19 30.8 c 19 30.8 c 10 30.
	 nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (without alignments) 6135.749 Million cell updates/ 	<pre>nucleic - nucleic search, using sw model on: August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (without alignments) 6135.749 Million cell updates/ 6135.749 Million cell updates/ 6135.749 Million cell updates/ fect score: 129 lect score: 129 lect score: 1 tgaccttctgctcgtagcgatattccggactagttcagcg 129</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (withut alignments) (withut a</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (withbut alignments) 6135.749 Million cell updates/ score: US-10-782-899-1_COPY_472_600 score: 129 score: 129 table: IDENTITY_NUC fape: IDENTITY_NUC dapop 10.0 , Gapext 1.0 i: 4708233 seqs, 24227607955 residues</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (withut alignments) (si35.749 Million cell updates/ score: US-10-782-899-1_COFY_472_600 score: 129 1 tgaccttcgctcgtagcgatattccggactagttcagcg 129 table: IbENTITY_NUC Gapop 10.0 , Gapext 1.0 1: 4708233 seqs, 24227607955 residues mber of hits satisfying chosen parameters: 9416466</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (withut alignments) (si35.749 Million cell updates/ score: US-10-782-899-1_COFY_472_600 score: 129 1 tgaccttcgctcgtagcgatattccggactagttcagcg 129 table: IbENTITY_NUC Gapop 10.0 , Gapext 1.0 1: 4708233 seqs, 24227607955 residues imber of hits satisfying chosen parameters: 9416466 DB seq length: 0 DB seq length: 0 DB seq length: 200000000</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (without alignments) (si35.749 Million cell updates) score: US-10-782-899-1_COPY_472_600 score: 129 1 taple: ltgaccttcgctcgtagcgatattccggactagttcagcg 129 table: ltgaccttcgctcgtagcgatattccggactagttcagcg 129 table: gapop 10.0 , Gapext 1.0 1: 4708233 seqs, 24227607955 residues imber of hits satisfying chosen parameters: 9416466 DB seq length: 0 DB seq length: 0 DB seq length: 200000000 DB seq length: 200000000 DCessing: Minimum Match 0% Listing first 45 summaries Listing first 45 summaries</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds (without alignments) us: 10-782-899-1_COPY_472_600 score: 129 1 tgaccttctgctcgtagcgatattccggactagttcagcg 129 table: 128 1 tgaccttctgctcgtagcgatattccggactagttcagcg 129 table: 128 1 tgaccttctgctcgtagcgatattccggactagttcagcg 120 table: 128 100 0000000 0 B seq length: 0 0 B seq length: 0 0 B seq length: 0 0 B seq length: 20000000 0 Cessing: Minimum Match 100 Maximum Match 100 ti gb_bta: 5 gb</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; search time 1018.74 Seconds (withhout alignments) score: US-10-782-899-1_COPY_472_600 score: 129 1 tgaccttctgctcgtagcgatattccggactagttcagcg 129 table: IDEWTITY NUC Gapop 10.0, Gapext 1.0 1: 4708233 seqs. 24227607955 residues amber of hits satisfying chosen parameters: 9416466 DB seq length: 0 DB seq length: 0 DCcessing first 45 summaries = :</pre>	<pre>sic - nucleic search, using sw model August 5, 2005, 21:21:24 ; Search time 1018.74 Seconds G135.749 Million cell updates) score: 129 us-10-782-899-1_COPY_472_600 score: 129 us-10-782-899-1_COPY_472_600 i: 1tgaccttctgctcgtagcgatattccgggactagttcagcg 129 table: 108NTTTTTVNC dapop 10.0 , Gapext 1.0 1: 4708233 seqs, 24227607955 residues mber of hits satisfying chosen parameters: 9416466 mber of hits satisfying chosen parameters: 9416466 bs seq length: 20000000 0 DB seq length: 20000000 0 DB seq length: 20000000 0 cessing: Minimum Match 100 tisting first 45 summaries 1: 9416466 bs seq length: 20000000 0 cessing: Winimum Match 100 tisting first 45 summaries 2: 90-101: 2: 90-101: 2</pre>

AC130043 Rattus no AY343890 Streptomy AC094151 Rattus no AL66928 Mouse DNA AP005726 OTYZa sat AK110305 OTYZa sat AK110305 OTYZa sat AK1123336 Mycoacte BX276099 Cebrafish AF423315 Homo sapi AF423315 Homo sapi AF423315 Homo sapi AF423315 Homo sapi AC124094 Sequence AF42897 Rattus no AR480420 Sequence AF246897 Setreptoco AC097971 Homo sapi AC125269 Mus muscu AC125268 Mus muscu AC122268 Mus muscu	DNA linear BCT 15-JAN-2003 pum hup gene for histone-like HU pum pum pum pum pum pum cteridae; Bifidobacteriales; m.), S99-603 (2002)), 599-603 (2002)), 599-603 (2002)), 599-603 (2002) m. longum bio cho, Misasagi, Yamashina-ku, cand Cellular Biology for pno-cho, Misasagi, Yamashina-ku, cand Cellular Biology for no-cho, Misasagi, Yamashina-ku, cand Cellular Biology for no-cho, Misasagi, Yamashina-ku, cand Cellular Biology for protein HB1"
AC130043 AY3438943 AY3438943 AC094151 AL065928 AP065928 AP065928 AP055946 AP005794 AY129335 AF7609403 AP129315 AC054403 AC054403 AC054403 AC054403 AC054403 AC05444 AC05219 AL591946 AL591946 AL591946 AL591946 AL591946 AC022568 AC022568 AC02268 AC02268 AC02268 AC02268 AC02268 AC02268 AC02268 AC02268 AC02669 AC02268 AC02268 AC02268 AC025669 AC02268 AC02268 AC025669 AC02566	ALIGNMENTS ALIGNMENTS and be of by DN e cds. bongum e cds. congum um biovar Longum um biovar Longum eria, Actinobacte Bifidobacterium. ra, H. and Kano, Y. on in Escherichia tein HU of Bifido Bicchem. 66 (3), slichem. 66 (3), slifiers e of Molecular an ces; 1, Shichono- (1) Yasunobu Kano e of Molecular an ces; 1, Shichono- ilfiers Bifidobacterium 1 genomic DNA" allfiers leal1 istone-like HU pr istone-like HU pr istone-like HU pr
23.7 23086 2 23.1 23086 2 23.1 1510326 10 23.1 1510326 10 23.1 1510326 10 23.1 1510326 10 23.1 1510326 10 23.1 1510305 2 23.1 1510305 2 23.1 1510305 2 23.2 9 174119 22.9 110546 9 22.9 135502 9 22.9 13664 6 22.9 13664 2 22.9 13664 2 22.9 13664 2 22.8 13664 2 22.8 168183 9 22.8 1688183 10 22.8 1688183 10 22.8 207136 10 22.8 203826 10 22.6 132826 10 22.6 1255 10	AB072446 Bifidobacterium longum profein HB1, complete of AB072446.1 GI:19918955 AB072446.1 GI:19918955 Bifidobacterium longum Baffidobacterium longum Bifidobacterium longum Bifidobacterium longum Bifidobacteria and expression Takeuchi, A.; Matsumura, Takeuchi, A.; Matsumura, Iakeuchi, A.; Matsumura, Bifidobacteria bifi Bifidobacteria bifi abfects and expression Cloning and expression Bifidobacteria bific Disect Submiss of Signa 1 to 600 Bilrect Submiss of Disect Submiss of Disect Submiss of Disect Submiss of Disect Submiss of Disect and concernent for all 15554719, Taxas Piarmaceutical Sciences (pointer to 600 Billor 1 10. 185 193. 474 193. 47
C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ALIGAMENTS RESULT 1 RESULT 1 AD072446 LOCUS DEFINITION DEFINITION DEFINITION BIFIdobacterium longum biovar Longum hup gene fa ACCESSION ACCESSION ACCESSION ACCESSION ACCESSION ACCESSION ACCESSION ACCESSION AD72446.1 G1:19918953 ACCESSION BIFIdobacterium longum biovar Longum BIFIdobacterium longum biovar Longum BIFIdobacteriaceae; Bifidobacteridae; Bifi BIFIdobacteriaceae; Bifidobacteridae; Bifi BIFIdobacteriaceae; Bifidobacteridae; Bifi BIFIdobacteriaceae; Bifidobacteridae; Bifi BIFIdobacteriaceae; Bifidobacteridae; Bifi BIFIGObacteriaceae; Bifidobacteridae; Bifi DOURNAL AUTTORS TITLE AUTTORS TITLE AUTTORS REFERENCE REFERENCE AUTTORS REFERENCE AUTTORS REFERENCE AUTTORS REFERENCE AUTTORS REFERENCE AUTTORS REFERENCE REFERENCE AUTTORS REFERENCE AUTTOR

2005
40:18
15:4
Aug 8
Mon 7

Db 592 AGTTCAGCG 600	<pre>3 4/C AB014814 14216 bp DNA linear BCT 3 10N Bifidobacterium longum NCC2705 section 201 of 202 of the genome genome NCC2705 section 201 of 202 of the NAE014814.1 G1:23327097 S Bifidobacterium longum NCC2705 Bifid</pre>	TITLE The genome sequence of Bifidobacterium longum rellects its adaptation to the human gastrointestinal tract JOURNAL Proc. Natl. Acad. Sci. U.S.A. 99 (22), 14422-14427 (2002) PUBMED 12381787 Acad. Sci. U.S.A. 99 (22), 14422-14427 (2002) REFERENCE 2. (bases 1 to 14216) AUTHORS Schell,M.A., Karmiranizou,M., Snel,B., Vilanova,D., Berger,B., Pessi,G., Zwahlen,MC., Desiere,F., Bork,P., Delley,M., TITLE Direct Submission JOURNAL Submitted (27-AUG-2002) Bioscience, Nestle Research Center, P.O. Box 44, Lausanne 26 1000, Switzerland	ы С С	<pre>/db refer = G1:3337098 /ranslation = MPQLRDSGTRSLHATEPUPGAEMDGFCRIFGYGYAVTGAE /ranslation = MPQLRDSGTRSLHATEPUPGAEMDGFCRIFGYGYAVTGAE /ranslation = MPQLRDSGTRSTMTYLANGSRLYLDVGSHEEYATAEARDFREALAQD LAGEHVWANLALKAQRKLEBSYGAHATIHVEKNNUPSAGIAFGCHENYTUREPHA DEDSFRRLHUTGDSNRSNMTLAUTHLVLCAIEDAFHGYDSGFEOYAFADPAA DDDSFRRLHUTGDSNRSNMTLAUTHLVLCAIEDAFHGYDSGFEOYAFADPAA ANRTVSRFLDNPRAELTLESGESVSALGLQRRYYAAVKAFIETHGDALAGSLPATTID TANGBRENSKTUDALERGATOALADRYUMARKCLFDALKERREPUTFAQMEQLELDYHD IANGRLYGSLYDALABRYUMARKCLFDALKGRFVDAALNVGAQFSAD WTHLTTARBERREAILLDPFEABPTLGFEQLMEALN" gene /gene /gene /gene /gene /gene /geny /geny /geny /geny /geny /geny /geny /gene /geny /gen</pre>	<pre>/gene="hup" /gene="hup" /gene="hup" /gene="hup" /gene="hup" /gene="hup" /codon start=1 /cransT_table=11 /product="nal=11 /product="nal=11 /product="nal=11 /product="nal=11 /product="nal=11:" /product="nal=1:3327099" /translation="hanNESDLVSKIAQAEAAVNAFQDVFVEAMKSGEGL /translation="hanNesDLVS"/translation/translation/translation/translation/tra</pre>
/translation="MAYNKSDLVSKIAQKSNLTKAQAEAAVNAFQDVFVEAMKSGEGL KLTGLFSAERVKRPARTGRNPRTGEQIDIPASYGVRISAGSLLKKAVTE" ORIGIN	Query Match100.0%; Score 129; DB 1; Length 600;Best Local Similarity100.0%; Pred. No. 1.9e-30;Matches129; Conservative0; MismatchesCy1TGACCTTCTGCTCGTAGCGATTACTCGAGCATTACTGACGACAAAGACCCCGACGAGA 60Db472TGACCTTCTGCTCGTAGCGATTACTCGAGCATTACTGACGACAAAGACCCCGACCGA	RESULT 2 BD144660 LOCUS BD144660 DEFINITION Drug for gene therapy using anaerobic bacteria. DEFINITION Drug for gene therapy using anaerobic bacteria. ACCESSION BD144660 NERSION BD144660.1 GI:27850418 VERSION BD144660.1 GI:27850418 VERSION BD144660.1 GI:27850418 VERSION BD144660.1 GI:27850418 NERSION BD144600.1 GI:27850418 NERSION BD144600000000000000000000000000000000000	REFERENCE 1 (bases 1 to 600) AUTHORS Fujimori,M., Taniguchi,S., Amano,J., Yazawa,K., Kano,Y., Nakamura,T. and Sasaki,T. TITLE Drug for gene therapy using anaerobic bacteria JOURNAL Patent: JP 2002097144-A 1 02-APR-2002; JUN AMANO,MINORU FUJIMORI OORNENT OS Bifidobacterium longum PN JP 2002097144-A/1 PD 02-APR-2002 JP 2001290187 PT 21-SEP-2001 JP 2001290187 PT 21-SEP-2001 JP 2001290187 PT AINORU FUJIMORI SHUNICHIRO TANIGUCHI,JUN AMANO,KAZUTORA YAZAWA, PI MINORU FUJIMORI SHUNICHIRO TANIGUCHI,JUN AMANO,KAZUTORA YAZAWA, PI YASUMASA KANO,TOSHIYUKI NAKAMURA,TAKAYUKI SASAKI PC	A61K35/74,A61K31/396,A61K31/7068,A61K31/711,A61K38/00,A61K38/PC PC A61K37/02, PC A61K37/02, PC A61K37/04 PC A61K37/02, PC A61K37/04 PC A61K37/04 PC A61K37/04 PC A61K37/04 PC A61K37/04 PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/04 PC A61K37/02, PC A61K37/04, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/02, PC A61K37/04, PC A61K37/04, PC A61K37/02, PC	Query Match100.0%;Score 129;DB 6;Length 600;Best Local Similarity100.0%;Pred. No. 1.9e-30;Matches129;Matches129;Conservative0;Mismatches0;Oy1TGACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTCGAGCACGAGCAGCGAGA0;Db472TGACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTCGAGCACCAGCGAGA51Oy61TGACCTTCTGCTCGTAGCGATTACTTCGAGCATTACTCGAGCACCAGCGAGA531Oy61TGGCTCGTGGGGCTTTTTTTTTTCTGGGCAGCGAGCAGAGA531Oy61TGGTCGGGGGCTTTTTTTTTTTTTTTTTTTTCCGGACCTAGCGACCAACGAGCA531Oy61TGGTCGGGGGCTTTTTTGTTGGGCGTGGCGGGGGCTTTTTT

gene 76107855 CDS 76107855 76107855 76107855 76107855 76107855 76107855 76107855 76107855 76107855 7600881.803 7600881.801 77.831.801.802.803 77.831.801.802.803 77.831.801.802.70468 78.71.872.70468 79.891.803 70.901.81.804 70.91.81.804 70.91.81.81.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.91 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.81 70.91.81.91.94.91 70.91.81.91.94.91 70.91.91.91.91.94.91 70.91.91.91.91.91 70.91.91.91.91.91.91 70.91.91.91.91.91.91 70.91.91.91.91.91.91 70.91.91.91.91.91.91.91.91 70.91.91.91.91.91.91.91.91.91.91.91.91.91.	CORLEDDLROADLILIRAHSIYSQAEWTARRFELLGAGTOKGFYAAWAVAVAVA GFLAGWTIDGKPUPAMMSTFTYPPOEGULGGGUPDGFORKGTAAHDEFWIXAGGKU RYGTIAIQRYERSDOTINSWUYTIPGTDGQGDDSFFGMAONVELMSADORRRKADSSARM VARAMOGGIGGCBANPVYLIGHSOGGIVAATLASDWAESYTEHVVTAGSPVANHPIPO RYWYTSVEIDELSLAHLIQAANPVTDAMLTVOGHVSARASGSVAESMENLFLAEBRLGKIELNSGL RTGLTPYDAAPVAGSTNGRELSHWIXYHQAAYONATDLGSPAVQRHEAHFIPO RTGLTPYDAAPVAGSTNGRELSHWIXYHQAAYONATDLGSPAVQRHEAHFIPO COMPLement (94539800) Gene Complement (94539800) Gene="BL1805" Codon start=1 / transT_table=11 / transT_table>// transT_table>// transT_table>// transT_table>/	CDS (96H8="BL1806" (codor start=1 (rans1_table=1] (rans1_table=1] (rans1_table=1] (producT="hypothetical protein" (producT="hypothetical protein" (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (prote="hypothetical protein") (protein")	Query Match100.0%;Score 129;DB 1;Length 14216;Best Local Similarity100.0%;Pred: No. 2e-30;Matches129;Conservative0;Matches129;Conservative0;Mismatches0;Gaps0;Qy1TGACCTTCTGCTCGTGGGGATTACTTCGAGCATTACTGGCGACAAAGACCCGGAGGAGGG60Db1756TGACCTTCTGCTCGTGGCGATTACTTCGAGCATTACTGAGCACAAAGACCCCGAGCGGGGGGGG
		<pre>gene 64437084 (9437084 64437084 gene="BL1801" / gene="BL1801" / gene="BL1801" / cedon start=1 / transItableall / product="hypothetical membrane protein with unknown / product="hypothetical membrane protein with unknown / product="hypothetical membrane protein with unknown / protein id="AAN25584.1" / db_rref="Gi:2337102" / db_rref="Gi:237102" / translation="MPATTHFTPFKRFINDYSLENKWOFLDIAVGATLGAAGGVIFWGFN / translation="MPATTHFTPFKRFINDSILANLEYKPGALYVNLEGTLYFTVIGS 0FDLGFVIISALL0GFKREIPFKRFINLFILFILAIASGRALUALEYGFN / franslation="MPATTHFTPFKRFINLFILAIASGRALUALEYGFN / protein id="AAN25584.1" / db_rref="Gi:2337102" / db_rref="Gi:2341100" / franslation="MPATTHFTPFKRFINDSILANLEYGFNIEWFN / protein id="AAN25584.1" / db_rref="Gi:2341100" / db_rref=</pre>	<pre>gene (gene="BL180" (gene="BL180" complement(72207585) complement(72207585) /gene="BL1802" /note="COG family: DNA-directed RNA polymerase specialized sigma subunit" /codon start=1 /crangit_able=1 /protein lad="AAN25585.1" /db_rtef="G1:2337103" /db_rtef="G1:2337103" /db_rtef="G1:2337103" /db_rtef="G1:2337103" /db_rtef="G1:2337103" /grobartryertuposvogHLDEARRLRKEEAECRSNAARETRAAAQELHGMGLALQ QIGDILGVSRQRAHOLVNA"</pre>

Ą

8 15:40:18 2005 Mon Aug

source 1156646 lorganism="bifidobacterium longum biovar Longum" /ord_type="unassigned DNA" /mol_type="unassigned DNA" /mol_teseq 1: original length 2256646 splitted into-seq 1: from 0.000.001 to 0.349.980-seq 3: from 0.300.001 to 0.949.980-seq 5: from 0.900.001 to 1.249.980-seq 6: from 1.200.001 to 1.249.980-seq 8: from 1.560.001 to 1.849.980-seq 8: from 0.900.001 to 2.149.980-seq 9: from 0.845.1800-seq 8: from 0.845.1800-seq 7: from 1.800.001 to 2.149.980-seq 9: from 0.845.1800-seq 8: from 0.845.1800-seq 9: from 0.845.1800-seq 8: from 0.845.1800-seq 9: from 0.845.1800-seq 8: from	Query March 100.00; Score 129; DB 6; Length 15666; Dest Local Similarity 100.00; Statianity Dest Local Similarity 100.00; Statianity Marchanity 100.00; Statianity Dest Local Similarity 100.00; Statianity Dest Lites> Fractorscrentscren	Consensus quality: 7145138 bases at least Q30 Consensus quality: 7145484 bases at least Q20
QY 121 AGTTCAGCG 129 Db 1636 AGTTCAGCG 1628 Db 1636 AGTTCAGCG 1628 RESULT 4 AX492788/c AX492788/c AX492788 LOCUS AX492788 DEFINITION Sequence 1106 from Patent EP1227152. ACCESSION AX492788.1 GISSION AX492788.1	<pre>EXYMORGS ::::::::::::::::::::::::::::::::::::</pre>	

r

<pre>[Guillardia: B=3e-10 COG: Rv2442c; COG0361 Ribosomal protein L21; B=3e-07 FFAM: PF00829; Ribosomal prokaryotic L21 prot: B=2.2e-36 / codon start=1 / transl_table=11 / protein_id="CAD78720.1" / complement(17672018) / locus_tag="RB10135" / codon start=1 / transl_table=11 / transl_table=11 / transl_table=11 / product="hypothetical protein" / product="hypothetical protein" / transl_table=11 / transl_table=11 / product="hypothetical protein" / transl_table=11 / transl_table=11 / transl_table=11 / transl_table=11 / product="hypothetical protein" / transl_table=11 / transl_table=11 / transl_table=11 / transl_table=11 / transl_table=11 / product="hypothetical protein" / transl_table=11 // transl_ta</pre>	/protein_id="CAD78722.1" /db_xref="GI:32446816" /translation="MLVLRNRSELSVGYSGAARAARCVTGGLAPNGTYFTPPQGGCEF LRASPVTP" complement (21512372) /locus tag="RB10137"	<pre>complement(21512372) /locum_tag="mailto:" /codon_state1 /transf_table=11 /transf_table=11</pre>	<pre>/product="hypothetical protein-putative conserved hypothetical protein" /protein_id="CAD78723.1" /db.ref="G1:32446817" /trainslation="MSRRSGVLYDAPLEPKRSLGGGRATPFRRTRGRGFSMENGADC prpgIsLINARPFPPAARAGFSRYWRCT" complement(24783281) /locus_tag="mB10138" /locus_tag="mB10138" /locus_tag="RB10138" /function="inner membrane organization" /function="inner membrane organization" /rotes="best" /rotes="best" /rotes="best" /codon start=1 /trainsT_table=11</pre>	<pre>/product="conserved hypothetical protein-putative membrane lipoprotein" /protecin_d="CAD78734.1" /proprotein" /bref="GI:32446818" /translation="MELVTDFFNAPFLQRNSTSSALMSLVFAGCCLLNVGFESIAEA DEPEADTSNSVSVERPTINAPGMRQLDGDDFVRVNGDDQTLTWEGTEALGSGOPIGVTR TNFEVKNFELV10MKHLKPAGNSGVFAWVPMSALKOLPPNHLPNTGIEVOMUDLDVGR MYTEKTGKPPTWFTSHGDIFAVGKSSNQPFPPLSPDGHRSPFSAETTNPHGEWNQYYV RGITMNGVEVKGSRSCSPDEGFLCLESEGGSPIRFREIWLRELP" complement(3392.3521) /locus_tag="RB10139" /locus_tag="RB10139" /locus_tag="RB10139" /locus_tag="RB10139" /locus_tag="RB10139" /codoct="hypothetical protein" /fransl_table=11 /transl_table=11 /transl_table=11 /transl_table=11 /transl_table=11 /translation="MRHKHDRMKIRGISKNPIDLPSRYRGRVLKPKKRRSFRSFLRE /translation="MRHKHDRMKIRGISKNPIDLPSRYRGRVLKPKKRRSFRSFLRE /translation="MRHKHDRMKIRGISKNPIDLPSRYRGRVLKPKKRRSFRSFLRE</pre>
dene CDS CDS	Gene	CDS	gene CDS	a e ne CDS
Quality coverage: 8.03 This sequence was finished as follows unless otherwise noted: all regions were double stranded, sequenced with an alternate chemistry, or coveredby high quality data (i.e., phred quality >= 30); an attempt was made to resolve all sequencing problems, such as compressions and repeats; allogions were covered by at least one plasmid Sequence; assembly was additionally confirmed by long range per and cosmid end sequences. 	Location/Qualifiers 1295650 /organism="Rhodopirellula baltica SH 1" /mol_type="genomic DNA" /dh *rrf="taxon:241900"	complement (414 1508) /gene="pknH" /locus_tag="RB10133" complement (414 1508)	<pre>ied signal transduction; unspeci led regulatory protein; cellula l transduction" : BLAST: swissprot:011053; PKNH ONINE-PROTEN; E=35 embl:CAB5 serinethreonine-protein; E=1e-3 3132604) hypothetical protein serinethreonine-codo515 serin kinases; E=3e-36 PFAM: PFC in; E=7.6e-54"</pre>	<pre>/product="probable serine/threonine-protein kinase pknH" /product="probable serine/threonine-protein kinase pknH" /pb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:324481.3" /bb_rtef="dt1:32471351.7" /bb_rtef="dt1:32471351.7" /bb_rtef="dt1:32471351.7" /bb_rtef="dt1:32471351.7" /bb_rtef="dt1:32471351.7" /bb_rtef="dt1:334" /bb_rtef="dt1:334" /bb_rtef="dt1:334" /bb_rtef="dt1:334" /bb_rtef="dt1:3443" /bb_rtef="dt1:344" /bb_rtef="dt1</pre>
	FEATURES' source	gene CDS		gene CDS

٠

us-10-782-899-1_copy_472_600.rge

2005	
15:40:18	
Aug 8	
Mon	

<pre>/chromosome="III" 550. :1380 550. :1380 /gene="ECU03_0010" 550. :1380 /gene="ECU03_0010" /gene="ECU03_0010" /function="unknown, gene found by Glimmer [Bad Olap 2 /foote="03_0010, unknown, gene found by Glimmer [Bad Olap 2 /foote="10" /codon_start=1 /protein id="CAD26148.1" /db_xref="GI:19168629"</pre>	<pre>/translation="MAAPTOLETARKHSNOSEGEPAPLAEFTAMPKENSHLAND SUHPDFRSKSARLRCOPFRTNUCGTFKOPEVAATSFCARFYCPPFLQPFTKGTPPFKG KUNITEGGTHTBANDENTKHTETBP11SHCZPPHCGPTATPNLLPCPNPTSFCON TRDSPSLPPQRPNNMH1PETPLQRRLSPSQLFITIPESPYLLSTAKTYYYLQPPYLDT LSHEIHFIVPLLCPYEHHTHNRAARREPATLENNPRHRSIRLNYIPSHHVPHLRRRQF 1211. 2020 /gene="ECU03 0020" /function="Unknown" /function="Unknown"</pre>	hetical protein" D26149.1" D26149.1" E8630" E88530" E885215FAHMNITHTTEQHAENQPHWKTILDIAPFVSIT F85158715FAHMNITHTTEQHAENQPHWKTILDIAPFVSIT F85181587111515815777972581558771797 T1PFSLNEWDHAASFF791715515871215858771797 T1VNLLVFKEFNYTP75A1155158712152584721576055 T1VNLLVFKEFNYTP75A115515871268787512987940" . 35781	<pre>/gene="ECU03_0030" complement(32223578) /gene="ECU03_0030" /function="unknown" /note="03_0030, unknown, gene found by Glimmer" /codon start=1</pre>	<pre>/product="hypothetical protein" /protein_id="CAD26150.1" /db_rref="G1:19168631.1" /trainslation="NPVGGLuPYLALRSVAYICVFGDSSRAPDLIREAPESPHFKR PDGAGTYKEAKGRCGMRFADVVNGAFGQISDMADKVGKGEPEVWCIWKKRGEVEMLLK VKEYRKGYGSKRRRRR" 4169. 4975 /gene="ECU30 0040"</pre>	<pre>41694975 _ /gene="BCU03_0040" /function="unknown" /note="03_0040, unknown, gene found by Glimmer" /codon start=1 /product="hypothetical protein" /dh xref="cf11916652" /dh xref="cf11916652"</pre>	<pre>/ translation="MNTTHVPEPHRTEQHTENLQHWRKILGIAPIVSIAFPAIMYFIF TKDSFEDSLFIRFTTLLSFSFAQV7ANLHHTWKSHNKSFAGILHTTYTJNLLLL AFSIISILSTTTLPINKWRNOG9FILESIFLPPLFMSFBYZLGSFLVFOGIGFTDT GINVIIDILTLLCSVGSLLILBESEYCYCFAIISSILLIRLLGEKLSPEKOSPPT APWRIAVFVLILIFAALIYAFWMWVSIDILSDHFDLLTRARSTSVSKFGQ" 5400. 6665 5400. 6665</pre>	/genee=b.cuo.coo. /function="unknown" /note="03_0050, unknown, gene found by Glimmer" /codon_start=1 /protein_id="CADS6152.1" /db_xref="GI:19168633" /translation="MEQISRIKTTLDEVDLDYDERAFRGLSVEKLMVRAFWLISDIVK
gene CDS	gene CDS	ອບ ອອ ອີ	CDS	gene gene	S C C	gene CDS	
<pre>SRTIILSYHGSTRIHLAQPAFGRCHNPQSSTHQKS" 37075527 /locus_tag="RB10140" 37075527 /locus_tag="RB10140" /function="anion transporters (Cl(-), SO4(2-), PO4(3-), /function="anion transporters (Cl(-), SO4(2-), PO4(3-), /note="Best DB hits: BLAST: pir:B82127; sulfate permease family protein VC2031 [imported] -; E=1e-89 pir:G83325; probable sulfate transporter PA2563 [imported] -; B=5e-53 ddbj:BA804133.1; (AP001508) sulfate permease [Bacillus; E=1e-51 COG: VC2031; COG59 Sulfate permease and related</pre>	25.3%; Score 32.6; DB 1; Length 295650; Similarity 53.5%; Pred. No. 18; B; Conservative 0; Mismatches 59; Indels 0; Gaps TGACCTTCTGCTGGGGATTACTTGGGGATTACTGACGACGAAAAGACCCGGAGAA 	14891 TGTTGTGTTGTTGGGGGGGGGGGGGGGGGGGGGGGGG	ALS90443 ALS90443.1 ALDS opportu Parasite. Encephalitoz	-	Nature 414 (6862), 450-453 (2001) 21576510 11719806 2 (bases 1 to 194439) 2 enoscope Direct Submission Submitted (05-APR-2001) Genoscope - Centre National de Sequencage, comitted (05-APR-2001) Genoscope - Centre National de Sequencage,	<pre>strue descuir Leureux, cr 3700, 3100, 2000,</pre>	The telomeric and subtelomeric sequences are not included in this submission. 1194439 ce 1194439 /organism="Encephalitozoon cuniculi GB-M1" /orl_type="genomic DNA" /strain="GB-M1" /db_xref="taxon:284813"
gene CDS	Quer) Best Match Match	DD 148 QY 148 DD 148 LAB CNS07EGA/C LOCUS DEFINITION	ACCESSION VERSION KEYWORDS SOURCE	UKGANIZAT REFERENCE AUTHORS TITLE	JOURNAL MEDLINE PUBMED REFERENCE AUTHORS TITLE JOURNAL	COMMENT	FEATURES source

٠

CDS /gene="ECU03_0100" 140112966 /gene="ECU03_0100" /gene="ECU03_0100" /gene="ECU03_0100" /gene="ECU03_0100" %dote="03_0150, similarity to HYPOTHETICAL PROTEIN %dote="03_0150, similarity to HYPOTHETICAL PROTEIN %dot /group internation internation with the analysis of the found by 01immer" /group Match %dot start=1 /gene="MCRDATVILIFLUELSVSREIPDMRDILYEDFHXEMODPFTPLI /group Match %dot start=1 /gene="MCRDATVILIFLUELSVSREIPDMRDILYEDFHXEMODPFTPLI /group found found by 01immer" /group found found by 01immer" /group found found found by 01immer" /group found fou	12762 5 5 12762 5ULT 8 119844 FINITION FINITION CESSION RSION RSION RSION CESSION	<pre>ORGANISM Oryza sativa (japonica cultivar-group) Bukaryota; Viridiplantee; Streptophyta; Embryophyta; Tracheophyta; Spermatophyta; Magnoliophyta; Lillopsida; Poales; Poaceae; Ehrhartoidees; Oryzeae; Oryza. Ehrhartoidees; Oryzeae; Oryza. REFERENCE The Rice Full-Length CDNA Consortium, National Institute of AUTHORS AUTHORS AUTHORS The Rice Full-Length CDNA Project Team; Kikuchi, S., Satch,K., Nagata,T., Kawagashira,N., Doi,K., Kishimoto,N., Yazaki,U., Ishikawa,M., Yamada,H., Ooka,H., Hotta,I., Kojima,K., Namiki,T., Poundation of Advancement of International Ontsuki,K., Sujanki,T., Poundation of Advancement of International Ida,Y., Sugamo,S., Fujimura,T., Suzuki,Y., Tsuunoda,Y., Kurobaki,T., Kodama,T., Masuda,H., Kobayashi,M., Xie,Q., Lu,M., Narikawa,R., Sujiyama,A., Mizuno,K., Yokonizo,S., Niikura,J., Foor, P., Ruira,J., Kurobaki,T., Kauma,A., Mizuno,K., Yokonizo,S., Niikura,J., Foor, P., Ruira, P., Nizan, A., Mizuno,K., Yokonizo,S., Niikura,J., Foor, P., Ruira, P., Kausana, A., Mizuno,K., Yokonizo,S., Niikura,J., Foor, P., Ruira, P., Robayashi,M., Kao,Q., Lu,M., Foor, P., Kurobaya, P., Kaua, A., Mizuno, K., Yokonizo,S., Niikura,J., Foor, P., Kurobaya, P., Kausana, A., Kausa, A., Niura,J., Foor, P., Kurobaya, P., Kausa, K., Suzuki, Y., Kurobayashi, M., Kausa, K., Suzuki, Y., Kurobayashi, M., Kausa, K., Suzuki, Y., Kurobayashi, M., Kausa, K., Yaku, Kausa, K., Yaku, Kausa, K., Kurobayashi, M., Kausa, K., Yaku, Y., Kurobayashi, K., Yokonizo, S., Niikura,J., Kuroba, K., Yokonizo, S., Niiku, J., Kurobayashi, Kausa, K., Kurobayashi, K., Yokonizo, S., Niiku, Y., Kurobayashi, Kausa, K</pre>	<pre>Kusumegi,T., Oka,M. Yu,R., Ueda,M., Matsubara,K., TEKEN; Kusumegi,T., Oka,M. Yu,R., Ueda,M., Matsubara,K., Tukuda,S., Kawa,J., Carninci,P., Adachi,J., Aizawa,K., Arakawa,T., Fukuda,S., Kagawa,I., Kondo,S., Konno,H., Miyazaki,A., Osato,N., Ota,Y., Saito,R., Sasaki,D., Sato,K., Shibata,K., Shinagawa,A., Shiraki,T., Voshino,M. and Hayashizaki,Y. Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice JOURNAL Science 301 (5631), 376-379 (2003) MEDLINE Science 301 (5631), 376-379 (2003) MEDLINE M</pre>
CERMHPAIACYRNLIDSILBDLEEKGHPEGITAVNAAKDALRALEDVVNRKCOILSLS KKAHGTEEPYYFGAIDGYLKDYFGLLKAFKDALRKULHVRGDLKVKVNBMKLLEAMS DFLKVLKKQLDGEKVQERPSTLDIYKYLMNEVNEVVELHVRGDLKVKVNBMKLLEAMS NWSYYFDDIRALAITFQKTFQHDIDBASLSRTINBLLGLEGEGUSVYFEAN MSYFYPDIRALAITFQKTCHNIDDASLSRTINBLLGLESELGGNTREREKGLSD LKERISDLESCKLKALRTSCTRVIDDVESNGKSFSDAFSELNGMLREREKGLSD LKERISDLENDSSPKULGELFFMFTAILAIHSFLHLAEDKNSRVKTRWNTALYS LVAGTINHQWVLMGGGCTGMRMGQVMC" 6782. 7153 69ene="ECU03 0060" 6782. 7153 69ene="ECU03 0060" 6782. 7153 6000 = "Unknown" 7000 = "Unknown" 7000 = "Unknown" 7000 = 103 0060, unknown, gene found by Glimmer [Delay by 228 5 109 38] 7000 = 103 0060, unknown, gene found by Glimmer [Delay by 228 5 109 38] 7000 = 103 0060, unknown, gene found by Glimmer [Delay by 228 5 109 38] 7000 = 103 0060, unknown 7000 = 103 0050, unknown 7000 = 103 0050, unknown 7000 = 103 0050, unknown 7000 = 103 0050, unknown 7000 = 1000 0050, unknown 7000 = 10000, unknown 7000 = 10000 0050, unknown 7000 = 10000, unknown 7000 = 10000 0050, unknown 7000 = 10000 0050, unknown 7000 = 10000 0050, unknown 7000 = 10000 0050, unknown 7000 = 10000 0050 0050 00500 00500 00500 00500 0050 005000000	<pre>skUTFMLCKKGLDMLGIAAS complement (76427953) /gene="ECU03_0070" complement (76427953) /gene="ECU03_0070" /function3_0070, unknown /note="03_0070, unknown, gene found by Glimmer [Shorter 8 /acdon gtart=1 /codon gtart=1 /product="hypothetical protein" /product="hypothetical protein" /product="Hypothetical protein" /product="Clig16166155" /db_rref="Glig191666155" /translation="MIERRETVLYFQLWMANAMTERNEMTANVMKRALEKYRSILCM APSGLVLSFQLARNRRTIGNAIDMNTARSLGIVPPPIIELVLGVLLCCVCGVHAGKGE % 7112_8189</pre>	<pre>/gene="ECU03_0080" 7112. 8389 7122. 8389 /gene="ECU03_0080" /gene="uninown" /note="uninown" /note="uninown" /note="uninown" / product="uninown" 242 0] 242 0] 242 0] 242 0] 7000 start=1 / codon_start=1 / product="hypothetical protein" / product="hypothetical" / product="hypothe</pre>	<pre>complement (857610444) / gene="ECU03_0090" / gene="ECU03_0090" / function= unknown, gene found by Glimmer" / function="unknown, gene found by Glimmer" / function="unknown, gene found by Glimmer" / codon_start=1 / protein_id="cost5156.1" / protein_id="cost5156.1" / protein_id="cost5156.1" / protein_id="cost5156.1" / protein_id="cost5156.1" / db_xref="c1:19168637" / translation="wGSCPFOTMRNMLVSATALVDILCTSKIEBLVENMGKKIEBALP / protein_id="cost5156.1" / db_xref="c1:19168637" / translation="wGSCPFOTMRNMLVSATALVDILCTSKIEBLVENMGKKIEBALP / protein_id="cost5156.1" / db_xref="c1:19168637" / db_xref="c1:19168637" / db_xref="c1:19168637" / translation="wGSCPFOTMRNMLVSATALVDILCTSKIEBLVENMGKKIEBALP / protein_id="cost5156" / db_xref="c1:19168637" / db_xref="c1:19168637" /</pre>
gen e C gen e	gene CDS		gene gene

Page 7

Mon Aug 8 15:40:18 2005

3 . us-10-782-899-1_copy_472_600.rge

1	Ľ	7
•	C	>
•	C	>
•	0	¢
4		1
	•	•
1	¢	>
•	4	5
	•	•
I	Ľ	7
٩		1
•	0	0
•		

ACL38544 92770 bp DNA linear HTG 20-MAR-2004 Magnaporthe grisea chromosome 7 clone 15G13, *** SEQUENCING IN PROGRESS ***. ACLJ8542 90417 bp DNA linear HTG 20-MAR-2004 Magnaporthe grisea chromosome 7 clone 12G19, *** SEQUENCING IN PROGRESS ***. 2 (bases 1 to 90417) Dean, R.A. Dr, Mitchell, T. Dr, Thon, M. Dr and Brown, D.E. Direct Submission Submitted (09-JAN-2003) Plant Pathology - Fungal Genomics Laboratory, North carolina State University, 840 Main Campus Drive, Raleigh, NC 27666, USA 3 (bases 1 to 90417) Direct Submission Submitted (20-MAR-2004) Center for Integrated Fungal Research, Submitted (20-MAR-2004) Center for Integrated Fungal Research, North Carolina State University, Plant Pathology - 840 Main Campus Dr, Raleigh, NC 27606, USA On Mar 20, 2004 this sequence version replaced gi:27552536. * NOTE: This is a 'working daraft' sequence. It currently * consists of 1 contigs. Gaps between the contigs * are represented as runs of N. The order of the pieces Thon, M.R., Mitchell, T., Brown, D.E., Diener, S., Taro, A., Pan, H. and Thon, M.R., Mitchell, T., Brown, D.E., Diener, S., Taro, A., Pan, H. and 5 CTTCTGCTCGTAGCGATTACTTCGAGCATTACTGACGACGAGGACGGAGCGGAGGATGGT Pezizomycotina; Sordariomycetes; Gaps Eukaryota; Fungi; Ascomycota; Pezizomycotina; Sordariomycetes Sordariomycetes incertae sedis; Magnaporthaceae; Magnaporthe. is believed to be correct as given, however the sizes of the gaps between them are based on estimates that have provided by the submittor. This sequence will be replaced by the finished sequence as soon as it is available and the acession number will be preserved. 1 90417: config of 90417 bp in length. ö DB 2; Length 90417; Indels Magnaporthe grisea (anamorph: Pyricularia grisea) Magnaporthe grisea AC138544.2 GI:45597492 HTG; HTGS PHASE2. Magnaporthe grisea (anamorph: Pyricularia grisėa) The sequence of Magnaporthe grisea chromosome 7 51; 1. .90417
/organism="Magnaporthe grisea" Pred. No. 44; ; Mismatches 24.3%; Score 31.4; 54.9%; Pred. No. 44 Location/Qualifiers ;0 AC138542.2 GI:45597487 HTG; HTG2_PHASE2. (bases 1 to 90417) 62; Conservative Best Local Similarity Matches 62; Conserv Unpublished Dean, R.A. Dean, R.A. AC138544 AC138542 Query Match source AC138542/c LOCUS RESULT 10 AC138544/c DEFINITION DEFINITION ORGANISM AUTHORS TITLE TITLE JOURNAL ACCESSION VERSION KEYWORDS SOURCE ACCESSION VERSION KEYWORDS AUTHORS JOURNAL REFERENCE AUTHORS REFERENCE JOURNAL REFERENCE FEATURES RESULT 9 TITLE COMMENT ORIGIN SOURCE LOCUS 8 đ 8 ą URL: http://cdnaol.dna.affrc.go.jp/CDNA/ NIAS Rice Full-Length CDNA Project Team: Kikuchi,S., Satoh,K., NiAS Rice Full-Length CDNA Project Team: Kikuchi,S., Satoh,K., Nagata.T., Kawagashira.N., Doi,K., Hotta,I., Kojima,K., Namiki,T., Ishikawa,M., Yamada,H., Ooka,H., Hotta,I., Kojima,K., Shishiki,T., Yamamoto,M. and Nakahama,Y. FAIS Genome Sequencing & Analysis Group: Otomo,Y., Iida,Y., FUJimura,T., Ikeda,R., Ishibiki,J., Kawamata,M., Nura,J., Miura,J., Mizuno,K., Nazikawa,R., Niikura,J., Oka,M., Ryu,R., Sugano,S., Suoshimura,A., Suzuki,Y., Teunoda,Y., Jeda,M., Ryu,R., Sugano,S., Yoshimura,A., Matsubara,K. and Murakami,K. Genome Exploration Research Group in Riken Genomic Sciences Center and Genome Exploratory in Riken: Adachi,J., Aizawa,K., Hirao,A., Hashizune,W., Hayatsu,N., Hirangaki,T., Hirao,A., Hashizune,W., Hayatsu,N., Hiyataki,T., Kishikwa-Hirozo,S., Yoshimura,A., Murada,S., Hanagaki,T., Kishikwa-Hirozo,S., Yoshimura,K., Numasaki,A., Murata,M., Kishikwa-Hirozo,S., Yoshimura,K., Numasaki,A., Murata,M., Koya,S., Kurihara,C., Matuyama,T., Miyazaki,A., Murata,M., Nakamura,M., Nishi,K., Nomura,K., Numasaki,A., Maki,K., Shinagawa,J., Sano,H., Sasaki,C., Sakai,K., Shinagawa,A., Shirzh,C., Sakai,K., Shinagawa,A., Shirzh,Y., Tagami,M., Shinagawa,A., Shirzh,Y., Shinagawa,A., Shirzh,Y., Tagami,M., Yasunishi,A., and Hayashizaki,Y., Cono,M., Osato,N., Sakai,X., Rasunishi,A., and Hayashizaki,Y., Dono,M., Osato,N., Sakai,Y., Rasunishi,A. and Hayashizaki,Y. Masuda,H., Matsubara,K., Matsuyama,T., Miura,J., Miyazaki,A., Mizuno,K., Murakami,K., Murata,M., Nagata,T., Nakahama,Y., Nakamura,M., Namiki,T., Narikawa,R., Nikura,J., Nishi,K., Oka,M., Nomura,K., Numasaki,R., Ohneda,E., Ohno,M., Ohtsuki,K., Oka,M., Ooka,H., Osato,N., Ota,Y., Ohnoo,M., Ohtsuki,K., Oka,M., Sakai,K., Sakazume,N., Sano,H., Sasaki,D., Sato,K., Satoh,K., Sugano,S., Sugiyama,A., Shiraki,T., Shishiki,T., Sogabe,Y., Sugano,S., Sugiyama,A., Shiraki,T., Takaku-Akahira,S., Tagami-Takeda,Y., Tagawa,A., Takahashi,F., Takaku-Akahira,S., Xie,Q., Yahagi,W., Yamada,H., Yamamoto,M., Yasunishi,A., Yazaki,J., Yokomizo,S. and Yoshiwura,A. ö 565 Submitted (31-JJN-2003) Shoshi Kikuchi, National Institute of Agrobiological Sciences, Department of Molecular Genetics, Head of Laboratory of Gene Expression; 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan (E-mail:skikuchi@nias.affrc.go.jp, Tel:81-29-838-7007, Fax:81-29-838-7007) This clone is one of the 32K full-length CDNA clones from japonica 75 506 AGTTATCACAGCATGGCTCTCTGCACCCTGACCGCCAACGAGCTGGCTTCCAGCTGTT Gaps organism="Oryza sativa (japonica cultivar-group)" ; 0 Length 3048; Indels 32; DB 8; 0; Mismatches Score 31.8; 1 Pred. No. 31; /moi_type="mRNA" /cultivar="Nipponbare" /db_xref="taxon:39947" /clone="002-178-D02" 566 TGTTGTGGTGCTGTGGTGTTTTG 588 76 TGTTGTGGTGCTGTGACGTGTTG 98 ch 24.7%; 1 Similarity 61.4%; 51; Conservative (bases 1 to 3048) from japonica řice Unpublished Submission 1. .3048 Query Match Best Local Similarity Kikuchi Direct rice. source TITLE JOURNAL Matches JOURNAL REFERENCE AUTHORS FEATURES TITLE COMMENT ORIGIN đ 8 5

88600

64

; 0

٩

Legaspi,R., Maduro,Q.L., Maduro,V.B., Margulies,E.H., Masiello,C., Maskeri,B., McDowell,J., Paguirigan,C., Peareon,R., Portnoy,M.E., Prasad,A., Reddix-Dugue,N., Schandler,K., Schneler,M.G., Shah,K., Sison,C., Stantripop,S., Thomas,J.W., Thipouri,V., Vogt,J.L., Wetherby,K.D., Wiggins,L., Young,A. and Green,E.D. UNINL Unpublished REFERENCE 2 (bases 1 to 128428) AUTHORS Green,E.D. TITLE SUCOMPARATIVE Sequencing Initiative AUTHORS Green,E.D. TITLE Submitted (23-MAY-2003) NIH Intramural Sequencing Center, 8717 Growmont Circle, Gaithersburg, MD 20877, USA AUTHORS Green,E.D. REFERENCE 3 (bases 1 to 128428) AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D. AUTHORS Green,E.D.	Grovemont Circle, Gaithersburg, MD 20877, USA COMMENT On Jun 11, 2003 this sequence version replaced gi:31044309. Center: NIH Intramural Sequencing Center Center code: NISC Web site: http://www.nisc.nih.gov Contact: nisc.zoo@nhgri.nih.gov contact: nisc.zoo@nhgri.nih.gov Center project Information Center project name: 64y Center clone name: 541E10	The sequence data in this record represents an 'enhanced' version of a phase 2 submission. Specifically, the indicated order and orientation of each sequence contig has been established using one or more of the following: read-pair data from individual subclones, overlaps with neighboring clones, alignment with available reference sequence (e.g., human), and/or confirmation by PCR testing. In addition, the sequence assembly is based on at least 8X average coverage in Q20 bases and has been reviewed to rule out gross misassemblies, the low-quality ends of sequence contigs have been trimmed away, and each base is associated with a Phrap-derived quality score.	Chemistry: Dyecter intrator Big Dye; 100% of reads Chemistry: Dyecter intrator Big Dye; 100% of reads Assembly program: Phrap; version 0.990319 Consensus quality: 127698 bases at least Q40 Consensus quality: 127698 bases at least Q40 Consensus quality: 12769 bases at least Q20 Insert size: 130000; agarose-fp Insert size: 127928; sum-of-contigs Quality coverage: 10.65x in Q20 bases; sum-of-contigs Quality coverage: 10.65x in Q20 bases; sum-of-contigs * NOTE: This is a 'working draft' sequence. It currently consists of 6 contigs. Gaps between the contigs	 Fare represented as runs of N. The order of the precess is believed to be correct as given, however the sizes of the gaps between them are based on eatimates that have provided by the submittor. This sequence will be replaced by the finished sequence as soon as it is available and by the finished sequence as soon as it is available and the accession number will be preseved. any 1 33969; contig of 19291 bp in length any 0 34069; gap of unknown length 53461 53361 53360; contig of 19291 bp in length 53461 112500; gap of unknown length 63440 112600; gap of unknown length 112611 112700; gap of unknown length 112701 118744; contrig of 6044 bp in length 112701 118744; contrig of 6044 bp in length 118745 128488; contrig of 9584 bp in length 118745 128488; contrig of 9584 bp in length 118745 128488; contrig of 9584 bp in length source
<pre>ORGANISM Magnaporthe grisea Eukaryota; Fungi; Ascomycota; Pezizomycotina; Sordariomycetes; Sordariomycetes incertae sedis; Magnaporthaceae; Magnaporthe. I bases 1 to 92770) AUTHORS Thon, M.R., Mitchell,T., Brown,D.E., Diener,S., Taro,A., Pan,H. and Dean,R.A. TITLE The sequence of Magnaporthe grisea chromosome 7 JOURNAL Unpublished REFERENCE 2 (bases 1 to 92770) AUTHORS Dean,R.A. Dr, Mitchell,T. Dr, Thon,M. Dr and Brown,D.E. Submitsed (09-JM-2003) Plant Pathology - Fungal Genomics Laboratory, North carolina State University, 840 Main Campus Drive, REFERENCE 3 (bases 1 to 92770) AUTHORS Thon,M.R., Mitchell,T. Brown,D.E., Taro,A., Pan,H. and REFERENCE 3 (bases 1 to 92770) AUTHORS Thon,M.R., Mitchell,T., Brown,D.E., Diener,S., Taro,A., Pan,H. and REFERENCE 3 (bases 1 to 92770)</pre>	<pre>Dean,R.A. Direct Submission Submitted (20-MAR-2004) Center for Integrated Fungal Res North Carolina State University, Plant Pathology - 840 M Dr, Raleigh, NC 27606, USA On Mar 20, 2004 this sequence version replaced gi:275255 * NOTE: This is a 'working draft' sequence. It currently * NOTE: This is a 'working draft' sequence. It currently * consists of 1 contigs. Gaps between the contigs * are represented as runs of N. The order of the pieces * is believed to be correct as given, however the sizes</pre>	 For the gaps between them are based on estimates that have provided by the submittor. This sequence will be replaced This sequence will be preserved. by the finished sequence as soon as it is available and by the finished sequence as soon as it is available and the accession number will be preserved. the accession number will be preserved. the accession number will be preserved. 1 92770 bp in length. fEATURES 1 92770 the grisea" forganism="Magnaporthe grisea" for type="genomic DNA" for type="genomic DNA" for the accession and the grisea" for the accession and the grisea" for the accession and the grisea" for the accession accession and the grisea" for the accession ac	Query Match24.3%Score 31.4; DB 2; Length 92770; Best Local Similarity 54.3%; Pred. No. 44; Matches 62; Conservative 0; Mismatches 51; Indels 0; Gaps 0; Oy 5 CTTCTGCTGGTATACTTCGAGGATTACTGAGGACAAAGACCCGAGGAGGAGGAGGAGGAGGAGGAGGA	RESULT 11 AC144889 LOCUS AC144889 128428 bp DNA linear HTG 11-JUN-2003 DEFINITION BOG tearurus clone RP42-541E10, WORKING DRAFT SEQUENCE, 6 ordered pieces ACCESSION AC144889 C G131581601 ACC44889 C G144889 C G131581601 AC144889 C G128420 AC144889 C G100 AC144889 C G100 AC144889 C G100 AC144889 C G100 AC144889 C G100 AC144889 C G100 AC14489 C G100 AC1448 C G10 AC1448 C G10 AC148 C G10

RS Green, B.D. AL Submitted (12-AUG-2001) NIH CT Submitted (12-AUG-2001) NIH CT Submitted (12-AUG-2001) NIH Grovemont Circle, Gaithersbu Grovemont Circle, Gaithersbu Contest nisc. zoomhgri Conter project Infor Center project name: 405D The sequence data in this re version of a phase 2 submiss Center project name: 405D Center project name: 405D The sequence assembly is bas Consensus quality: 2068 Consensus quality: 2068 Consensus quality: 2069 Consensus quality: 2069 Consensus quality: 2064 Consensus quality: 2068 Consensus quality coverage: 9.14X Proves de by the submittor. Provided by the	 113739 151887; contig of 18149 bp in length 151888 151987; gap of unknown length 151988 151929; contig of 9842 bp in length 161830 161929; gap of unknown length 161930 181367; contig of 19438 bp in length 181368 1814677; gap of unknown length 181468 181468 181468 181368 181468 11207821
Number ane cje)" Anumber ame cja)" ane cja)" 0; Gaps 0; 0; Gaps 0; 0; Gaps 0; 0; Gaps 0; 0; Gaps 0; 0; Caps 111542 AcraGrCGG 67 11602 362CrCCCA 111542 AcraGrCGG 127 362CrCCCA 111542 AcraGrCGG 127 362CrCCCA 111542 AcraGrCGG 127 362CrCCCA 111542 362CrCCCA 111542 372CrCCA 111552 372CrCCA 111552 372CrCCA 111552 372CrCA 11552 372CrCA 115	

r

99395043 10464207 2 (bases 1 to 5832) Morona,J.K., Morona,R. and Paton,J.C. Direct Submission Submitted (10-NOV-1998) Molecular Microbiology Unit, Women's and Submitted (10-NOV-1998) Molecular Microbiology Unit, Women's and Children's Hospital, 72 King William Rd, Adelaide, SA 5006, Australia Location/Qualifiers 1 . 5832	<pre>/organism="Streptococcus pneumoniae" /mol_type="genomic DNA" /mtain="19A2" /db_xref="19A" /db_xref="taxon:1313" /note="serogroup: 19" </pre>	<pre>/gene= cparray di88 /gene="cps19AJ" /code="cps19AJ" /code="cps19AJ" /rans_tatt=3 /trans_tatt=1 /protein id="ADD19911.1" /protein id="ADD19911.1" /db_xref="G1:4406247" /db_xref="G1:4406247"</pre>	LIYYPLKTULDUADAYODALIFWTLIFPMOYYEGGWALVIYTYLKULMERDILRVN ALVMLISMGVTLVTTYLLUNSLELTVVSIVVLLALRSIIAELILSKKLDVSVKKDIVLE FLLTLVFISSSWYLPIGLAVIVYTLAYGLYLYLKHEDIKTYLAYFKASKKTSN" 883. 1971 /gene="cp819AK" 883. 1971 /gene="cp819AK" /oodon e="cp819AK"	<pre>/transT_table=11 /product="UDP-N-acety1 glucosamine-2-epimerase" /protein_id="AAD19912.1" /protein_id="AAD19912.1" /db_xref="id1:4406248" /db_xref="id1:4406248" /db_xref="id1:4406248" /db_rref="id1:4406248" /db_rref="id1:4606768" /db_rref="/db_rref="id1:4606768" /db_rref="id1:4606768" /db_rre</pre>	<pre>2134. 3003 /gene="cp819AL" /gene="cp819AL" /codon_start=1 /rrans1_table=11 /product="glucose-1-phosphate thymidylyl transferase" /protein_id="ADD19913.1" /protein_id=</pre>	restructures 20043597 /gene="cps19AM" /gene="cps19AM" /note="cps19AM" /codon_start=1 /transl_table=11 /product="dTDP-4-keto-6-deoxyglucose-3,5-epimerase"
MEDLINE PUBMED REFERENCE AUTHORS TITLE JOURNAL FEATURES SOURCE	gene	CD	gene CDS	gene	B	gene CDS
<pre>/organism="Bos taurus" /db_tref="taxon:913" /db_tref="taxon:913" /db_tref="taxon:913" /db_tref="tage="tage="tage" /db_tref="tage="tage" /clone=lb="RP42" /clone=lb="RP42" /clone=lb="ref="tage" /clone=lft" misc feature 22762f1665</pre>		<pre>misc_feature 1239413638 misc_feature 123794131867 misc_feature 133799151887 misc_feature 151829 .161829 note="assembly_fragment" misc_feature 161930181367 misc_feature 161930181367 misc_feature 175822207821 note="assembly fragment" note="assembly f</pre>	<pre>misc_reature 18148820/821 /note="assembly_fragment clone_end:T7 vector_side:right" ORIGIN Query Match 24.3%; Score 31.4; DB 2; Length 207821; Best Local Similarity 53.7%; Pred. No. 44; Best Local Similarity 53.7%; Pred. No. 44; Matches 65; Conservative 0; Mismatches 56; Indels 0; Gaps 0;</pre>	DyBCTGCTCGTAGCATTACTTCGAGCATTACTGACGACAGAGAGCCGG67Db38349[11 11 11 11 11 10 N DS	SOURCE Streptococcus pneumoniae ORGANISM Streptococcus pneumoniae Bacteria; Firmicutes; Lactobacillales; Streptococcaceae; Streptococcus. REFERENCE 1 (bases 1 to 5832) AUTHORS Mortona, J.K., Mortona, R. and Paton, J.C. AUTHORS Mortona, J.K., Mortona, R. and Paton, J.C. TITLE Comparative genetics of capsular polysaccharide biosynthesis in Streptococcus pneumoniae types belonging to serogroup 19 JOURNAL J. Bacteriol. 181 (17), 5355-5364 (1999)

. ,

1

· Mon Aug 8 15:40:18 2005

•

Page 11

1 844 844 93 103 103 103 103 103 103 103 103 103 10		0 U	<pre>412 412 414 414 44</pre>		<pre>/transT_table=11 /product="putative regulatory protein Cps19aA" /product="putative regulatory protein Cps19aA" /product="putative regulatory protein Cps19aA" /product="putative regulatory /product="putative regulatory /protein_id="AAC78663.1" /db xref="granst" /protein.id="AAC78663.1" /db xref="granst" /</pre>	
KEYWORDS SOURCE ORGANISM REFERENCE AUTHORS TITLE JOURNAL MEDLINE PUBMED	REFERENCE AUTHORS TITLE JOURNAL MEDLINE PUBMED REFERENCE AUTHORS TITLE JOURNAL	FEATURES BOUICCE Gene	repeat dene	gene CDS		gene CDS
<pre>/protein_id="AAD19914.1" /db_xref="d1:4406250" /translation="MSDNFFGKTLVVRKIDA1PGLLEFDIPVHGDNRGWFKENFQKEK MLPLGFESFFAAGKLQNNVSESRKNVLGLAAEFWUKXISVADDGKVLGSWYDLREG ETFCNVYOTEIDASKGIFVPRGVANGFQULSDTVSYSYLVNDYWALELKPKYAFVNYA DPALGIEWENLPEAEVSEADKHHPLLRDVKPLTKDEL" 3609. 4655 /gene="cpel9AN" 3609. 4655 /gene="cpel9AN" /note="cpel9AN" /note="cpel9AN" /transT_tble=11</pre>		<pre>/gene="cps19A0" complement(47175571) /gene="cps19A0" /note="cps19A0" /codon start=1 /transT_table=11 /product="dflp=1.1 /gbouct="d1:4406252" /db_rref="d1:4406252"</pre>	/translston="MilTGANGQLGTELFYILMERVDYAVDYUDTEMILTNEEWEK VFBEVKPTLVYFCAXTAVDAEDEGKELDFAINVTGTENVDYAKOPTEMILTNEEWEK VFDGKKFVGGBWEVDDIPPQTBSYGRYGRNGRBELVENLTSQHYIIRTAWYFGNYGRN FVFDMQSLAETHKTLUVVSDQYGRPTWTRTLAEFMTVYTENQKEYGRYHISNDAAEDT TWYDPALETLKESDVELLPVDSSKFPAKAKRPLNSTMSLAKATGFVIFTWODALKE FYKQEVRK 58175532 /gene="alia" 58175532 /gene="alia" /codon start=1 /transf_table=11		Similarity 59.8%; Pred. No. 57; 2; Conservative 0; Mismatches 3: arracraacgacaaagaccccgacgargarggroggg 	AF094575 18754 bp DNA linear BCT 09-SEP-1999 Streptococcus pneumoniae serotype 19A DexB (dexB) gene, partial sequence; capsular polysaccharide biosynthesis operon, complete sequence; and oligopeptide permease AliA (aliA) gene, partial cds. AF094575.1 GI:3907597
gene CDS	stem_loop gene_loop	s D D	gene CDS	ORIGIN	Db 2782 Oy 32 Oy 32 Oy 3722 Oy 92 Oy 92 Db 2782 Db 2782	RESULT 14 AC094575 LOCUS DEFINITION ACCESSION VERSION

,

us-10-782-899-1_copy_472_600.rge

won Aug 8 15:40:18 2005

.

۹.

us-10-782-899-1_copy_472_600.rge

<pre>/gene="cps19ad" /function="putative protein involved in formation of phospho-diester linkage" /codon start=1 /transI table=11 /transI table=11 /transI table=11 /transI table=11 /transI id="AAC78669.1" /protein id="AAC78669.1" /brotein id="AAC78669.1" /transI ation="MDATAGTIASTYUGHYDMHSAKKULIGG /db xrtf="g113907605" /transI ation="MDATAGTIASTKGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASTGTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKDNIITASCFACTIASCFACTIASCFACTIASCFACTIASLEPANTNL vPREGYDKLPGITKUTIASCFAC</pre>	<pre>/urine="color="mproved">/urine="mproved">/urine="mproved"</pre>	<pre>/translation="MTYLFLLCLTLFLLTFFFFFFRODLIAPPVWSWFLISSVFA /translation="MTYLFLLCLTLFLTFFFFFAFNODLIAPPVWSWFLISSVFA TITVDUIILIYVREHNLLSTSTERLAINSFSLAWTKYTPKLLIDFFWALL TITVDLIILIYVRFINKFTSTRNLLAVFGNFERNATSYSGELTVFTSLFLIDF VSANTFGYTFNNFFISKTLALVFFLVFLARSKAGELDITKLLAVVVMA VIQOKRVCWDKVISHKYMRLGFVGLIAGIPTFYSLFLSGRSTTRTVESISTYLGG SIGHTAVOTIOPFGVAEVVEFFAFLFVLLAVFLARSKAGARLDHTTIYSYFFYMFL Gene 10497. 11924 (JGDD="cps19ad" CDS 10497. 11924 Query Match 24.0%; Score 31; DB 1; Length 18754; Best Local Similarity 59.8%; Pred. No. 58; Matches 52; Conservative 0; Mismatches 35; Indels 0; Gaps 0; QY 32 ATTACTGAAGAACACCGGAGAGAGGGGGTTTTTTGTTGTGGTGTGGTGGTGGTGGT</pre>	Db13828HTHACAGAGGTTACAGGGTTACCTAATCCTAATCCTGATGGCTCATGGCGCCY92CGTGGTTGTCCAACGGTTATTTCCGGADb13888CGTGGTTTTCCCAGCTGTTGGATACGGGADb13888CGTGGTTTTCCCTGGTTGGATACGGGADb13888CGTGGTTTTCCCTGGTTGGATACGGGADb13888CGTGGTTTTCCCTGGTTGGATACGGGADb13888CGTGGTTTTCCTGGTTGGATACGGGARESULT 1510RESULT 15AC092555/cAC092555/c222330 bpDOUGUSAC096255AC095255C1006CUSSIONAC096255AC096255G13052200RETULTIONRattus norvegicusAC096255G13052200KEYWORDSRTG; HTGS_PHASE2; HTGS_DRAFT; HTGS_FULLTOP.AC0962555G130522200KEYWORDSRattus norvegicusAC0962555G130522200KEYWORDSRattus norvegicusAC0962555G130522200KEYWORDSRattus norvegicusAC03052556G130522200KEYWORDSRattus norvegicusAC0962555G130522200KEYWORDSRattus norvegicusAC0962555G130522200KEYWORDSRattus norvegicusAC0305255AC0962255AC0962555G130522200KEYWORDSRattus norvegicusAC0962555AC0962255AC0962555G130522200KEYWORDSRattus norvegicusAC0962555AC0962255AC0962555AC0962555AC0962555AC0962555AC0962555AC0962555
<pre>/protein id="AAC78664.1" /db xref="G1:3907600" /translation="MIDHENTYPPUDDGPKSREESKALLAESYRQGYRTIVSTSHRR KGMFETPEEKLAENFLQVREIAKEVASDLVIAYGAEIYYTSDVLDKLEKNRIFTLNNS RYALTEFSWNREYRENKERACASDLVHIIESYDALENBEKRVRELINMGCYT QVNSSHVLKSKLFGEBKFKHKKACASOFFLERDLVHIIESDMHNUDSRPEHMAEAYDLVS QKYGEAKAQELFIDNPRKIVMDQLI" 3917. 4612 3917. 4717. 4717. 4717. 4717. 4717. 4717. 4717. 4717. 4717. 4717. 4717. 471</pre>	PLACWVPEPRAMK" 4622. 5311 (gene="cps19aD" 4622. 5311 (gene="cps19aD" (function="chain length regulation and export" (codon ftart=1 (ransī table=11 (protein id="AAT79666.1" (br xref="G1:3907666.1" (br xref="G1:3907666.1" (br xref="G1:3907666.1" (codot="string") (codot="	GSTANKAKAK GSTANKAKAK 5326. 6687 5326. 6687 5326. 6687 5326. 6687 700005 9388 700005 910005 11 700005 910005 11 700005 910005 11 700005 910005 11 700005 910005 71 71111111111111111111111111111111111	GGX. 7436 6693. 7436 6693. 7436 6691. 7436 6691. 7436 6691. 7436 7000 Eartel 7000 Fartel 7000 Fartel 7
gene CDS	gene CDS	g en e CDS	gene CDS CDS CDS

-.

Murry Drate. Nate. Algodii. M. Baca. S. Addms. C. Alder, J. Alder, J. Murry Drate. Nate. Constraint. Algodiant. S. Addms. C. Algodi. W. Baca. S. Badan. H. Barakerah. M. Banakerah. S. Manu, A. Anguiano, D. Anyailebchi, Y. Bandaranake, D. Bantedors, S. Badan. H. Barakerah. Butayt. C. Burch, P. Burch, P. Burreh, K. Calderon, S. Cardenso. S. Cardenso. J. Budayt. Chen. G. Chen. R. Center, M. Center, M. Cardenson, S. Cardenso. J. Cardenso. S. Chava. Control. J. Bandaranake, D. Burreh, K. Calderon, B. Cardenso. J. Chaveland. C. Borth, M. Baca, S. Dann, M. Center, M. Center, M. Cardenson, S. Daryt, Daya, D. Danson, S. Deramo, C. Ding, Y. Cardon, M. Center, M. Center, M. Davila, D. Danson, S. Deramo, C. Ding, Y. Din, M. Diyak, K. Barnake, J. Duan. A. Borth, M. Cardo, M. Cardenson, S. Deramo, C. Ding, Y. Din, M. Diyak, K. Barnake, S. Filipy, M. Flaggy, N. Cardy, M. Cree, A. Disou, Danson, S. Deramo, C. Ding, Y. Din, M. Diyak, K. Barnake, S. Filipy, M. Flaggy, N. Gardy, M. Cree, A. Disou, S. Deramo, C. Marka, C. Dederich, D. Darke, M. Barnay, K. Barnake, S. Handa, M. Banikon, K. Poster, M. Genter, M. Guvara, M. Harnay, Y. Havlak, N. Havlak, S. Hand, N. Handa, C. Hand, C. Danson, S. Darke, M. Handa, S. Kally, S. Manu, J. Manu, M. Mark, Mark, Manu, J. Jacken, M. Handa, S. Kally, S. Kally, S. Manu, J. Manu, Manu, M. Mark, Mark, Manu, Manuker, M. Manu, Manuker, S. Manu, M. Manu, Manu, Manuker, M. Manuker, Manuker, M. Manuker, M. Manu, Manuker, M. Manuker, Manuker, M. Manuker, Manuker, Manuker, Manuker, Manuker, Manuker, Manuker, Manu, Manuker, M (bases 1 to 222330) Rattus REFERENCE AUTHORS

Jnpublished

(bases 1 to 222330) Worley, K.C

REFERENCE AUTHORS

TITLE JOURNAL

Direct Submission Direct Submitselon Submitted (17-SRP-2001) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA Baylor Plaza, Houston, TX 77030, USA 1 (bases 1 to 222330) Rat Genome Sequencing Consortium. Direct Submission TITLE JOURNAL

REFERENCE AUTHORS

COMMENT

TITLE JOURNAL

Submitted (10-MX-2003) Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, US On May 10, 2003 this sequence version replaced gi:24942397. The sequence in this assembly is a combination of BAC based reads and whole genome shortgun sequence of reads assembled using Atlas (http://www.hgsc.com.tmc.edu/projects/rat/). Each contig described in the feature table below represents a scaffold in the Atlas assembly (a 'contigs aceffold'). Within each contigs casffold, individual sequence cording and ontigs casffold and separated by sized gaps filled with Ns to the estimated size. The sequence

may extend beyond the ends of the clone and there may be sequence contigs within a contig-scaffold that consist entirely of whole genome shotgun sequence reads. Both end sequences and whole genome shotgun sequence only contigs will be indicated in the feature table. Genome Center

NOTE: Betimated insert size may differ from sequence length (see http://www.hgsc.bcm.tmc.edu/docs/Genbank_draft_data.html). (see http://www.hgsc.bcm.tmc.edu/docs/Genbank_draft_data.html). consists of 1 contigs. Gaps between the contigs are represented as runs of N. The order of the pieces are represented as runs of N. The order of the pieces of the gaps between them are based on estimates that have provided by the submittor. This sequence will be replaced by the finished sequence as soon as it is available and the accession number will be preserved. 1 222330: contig of 222330 bp in length. Assembly program: Atlas 3.0; Consensus quality: 210552 bases at least 040 Consensus quality: 212815 bases at least 030 Consensus quality: 214416 bases at least 020 Estimated insert size: 220819; sum-of-contigs estimation Quality coverage: 7x in Q20 bases; sum-of-contigs estimation Center: Baylor College of Medicine Center code: BCM Web site: http://www.hgsc.bcm.tmc.edu/ Contact: hgsc-help@bcm.tmc.edu --------- project Information Center project name: GBUA Center clone name: CH30-89M22 .222330 (organism="Rattus norvegicus" /mol_type="genomic DNA" /db_xref="taxon:10116" ---- Summary Statistics Location/Qualifiers source FEATURES

/clone="CH230-89M22" 1. .1784
/note="wgs_contig" .1784 misc_feature ORIGIN

Gaps DB 2; Length 222330; ö Indels 47; 0; Mismatches Pred. No. 69; 23.9%; Score 30.8; 55.7%; Pred. No. 69 59; Conservative Query Match Best Local Similarity Matches

ö 60 8

81660 reaccartecrecartarcaccaratrarcecarecarecarecarecarecerecere ą

81600 TAATCTGAGGCACTGTGTTGTGGTTATGCAACATTTTGGACCATCG 81555 å 8

Search completed: August 6, 2005, 00:35:10 Job time : 1023.74 secs

2005	2
0	0
	bny
	HOH

.

us-10-782-899-1_copy_1_192.rge

н Page Ø Whateman, 101752899' Seg. D

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.

OM nucleic - nucleic search, using sw model

Run on:

August 5, 2005, 21:21:24 ; Search time 1516.26 Seconds
(without alignments)
6135.749 Million cell updates/sec

US-10-782-899-1_COPY_1_192 192 1 gctgggggggggggggggggggtga.....tgacccaagaaggatgcttt 192 Title: Perfect score: Sequence:

IDENTITY_NUC Gapop 10.0 , Gapext 1.0 Scoring table:

4708233 seqs, 24227607955 residues Searched:

Total number of hits satisfying chosen parameters:

9416466

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

GenEmbl:* Database :

.. ..

Ê

gb ba:* gb htg:* gb or:* gb ov:* gb pa:* gb pa:* t:*

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

SUMMARIES

Description		AE014814 Bifidobac	AX492788 Sequence	AX553955 Sequence	AB072446 Bifidobac	AC096816 Rattus no	AC122956 Rattus no	AL671518 Human DNA	AC101665 Mus muscu	AC140952 Pan trogl	AC092873 Pan trogl	AC098646 Pan trogl		AC149460 Papio anu	AC116068 Rattus no	AC097194 Rattus no	AC087432 Homo sapi	AC020753 Homo sapi	AC018814 Homo sapi
DI	BD144660	AE014814	AX492788	AX553955	AB072446	AC096816	AC122956	AL671518	AC101665	AC140952	AC092873	AC098646	AC151799	AC149460	AC116068	AC097194	AC087432	AC020753	AC018814
DB	ە ا	Ч	9	ø	ч	2	2	ø	2	σ	2	2	2	2	2	2	σ	2	σ
Query Match Length DB	600	14216	156638	156646	600	230625	246991	67395	285493	170350	171239	171391	188467	181622	231844	234234	152430	160410	166162
Query Match	100.0	91.2	91.2	91.2	90.2	19.3	19.3	19.0	19.0	18.6	18.6	18.6	18.6	18.2	18.2	18.2	18.1	18.1	18.1
Score	192	175.2	175.2	175.2	173.2	37	37	36.4	36.4	35.8	35.8	35.8	35.8	35	35	35	34.8	34.8	34.8
Result No.		0 0	m U	5 4	ы	9 0	0	8	6	10	11	12	с 13	c 14	15	c 16	17	18	19

	AC024216 Homo sapi AC028486 Homo sapi AC020688 Homo sapi AC020688 Homo sapi AL451049 Human DNA AL451049 Human DNA AL65315 Plasmodiu AL66314 Plasmodiu AC0141477 Mus muscu AC0108554 Homo sapi AC1008554 Homo sapi AF367244 Mus muscu AC008554 Homo sapi AF367244 Mus muscu AC102559 Mus muscu AF140786 Mus muscu AF140786 Mus muscu AF140786 Hum muscu AF140786 Hum muscu AF091512 Homo sapi AF091512 Homo sapi AF091515 Homo sapi AC001115 Homo sapi AC001115 Homo sapi AC001115 Homo sapi AC104287 DP000 Sapi AC001115 Homo sapi AC001115 Homo sapi	DNA linear PAT 17-JAN-2003 robic bacteria. bacteridae; Bifidobacteriales; i.u i.u i.u i.v. Yazawa,K., Kano,Y., rrobic bacteria :-2002; ranIGUCHI,JUN TANIGUCHI,JUN TANIGUCHI,JUN TANIGUCHI,JUN ranta,TAKAYUKI SASAKI PC (,A61K31/711,A61K38/00,A61K38/ PC (,A61K31/711,A61K38/ PC (,A61K31/711,A61K38/ PC (,A61K31/711,A61K38/ PC (,A61K31/711,A61K38/ PC (,A61K38/ PC (,A61K38/ PC (,A61K38/ PC (,A61K38/ PC) (,A61K38/ PC)	4e-51; 0; Indels 0; Gaps 0;
,	<pre>70 2 AC024216 51 2 AC018497 51 2 AC018497 73 9 AL451049 73 9 AL451049 73 9 AL451049 73 9 AL451049 73 9 AC0106554 73 9 AC0106554 73 9 AC0106536 73 9 AC0106536 73 3 AC008554 73 3 AC008554 73 3 AC008554 74 9 AC100355 75 7 000552387 75 7 000552387 76 7 0 AF140786 76 7 0 AF140786 77 0 AF140786 78 7 0</pre>	apy using anae apy using anae 50418 agum agum agum agum agum agum bafidobacter baki,r., Amanc saki,r., Amanc saki,r., Amanc saki,r., Amanc saki,r., Amanc saki,r., Amanc stito ana -A/1 -A/1 -A/1 -A/1 -A/1 -A/1 -A/1 -A/1	.0%; Pred. No. 4. 0; Mismatches
	34.8 18 18.1 188432 34.4 17.9 162249 34.4 17.9 162249 34.2 17.9 165249 34.2 17.8 155711 34.2 17.8 155711 34.2 17.8 155711 34.17.7 166973 33.6 17.7 179393 33.6 17.7 179393 33.6 17.7 179393 33.6 17.7 179393 33.6 17.7 179393 33.2 17.3 177917 33.2 17.3 179619 33.2 17.3 179619 33.2 17.3 166070 33.2 17.3 166700 33.2 17.3 167000 33.2 17.3 167000 33.2 17.3 1670000 34.2 17.3 167000000000000000000000000000000000000	<pre>BD144660 BD144660.1 GI:278 JP 2002097144.4/1. Bifidobacterium loo SM Bifidobacterium loo SM Bifidobacterium loo Bacteria: Actinoba Bacteria: Actinoba Bacteria: Actinoba Bifidobacterium loo S rujimori, M. Tanig Nakamura, T. and Sa Nakamura, T. and Sa Naka, T. and Sa</pre>	Similarity 92; Conservat
	0 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	FEATURES BD144660 LOCUS DEFINITION DEFINITION VERSION VERSION VERSION COURCE OUCES OUCES OUCES TITLE JOURNAL COMMENT FEATURES FEATURES BOUICE ORIGIN ORIGIN	Best Local Matches 1

2005
15:40:17
8
Aug
Mon

.

<pre>/gene="hup" /gene="hup" /note="Hup; cos family: bacterial nucleoid DNA-binding protein; FFAM_ID: Bac_DNA_binding" /codon start=1 /trans1_table=11 /product="DNA-binding protein Hu" /protein id="AAN25881.1" /protein id="AAN25881.1" /db_xref="GI:23327099" /trans1ation="MAYNKBDLVSKIAQKSALTKAQAEAAVNAFQDVFVEAMKSGEGL KirGLFSABRYKZAAARTGENDIPASYGYRISAGSLLKKAVTE" /db_xref="GI:23327099" /trans1ation="MAYNKBDLVSKIAQKSNLTKAQAEAAVNAFQDVFVEAMKSGEGL KirGLFSABRYKZAAARTGENDIPASYGYRISAGSLLKKAVTE" complement(2181.4742) /gene="BL1799" /gene="BL1799" /note="BL1799" /note="BL1799" /note="BL1799" /rans1_table=11 /trans1_table=11 /product="narrowly conserved hypothetical membrane protein id="AAN25582.1" /db_tref="GI:23327100" /tb_tref="GI:23327</pre>	ALQUYUNWLOFTLPWALVENTRYLINUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUUU	<pre>adenylosuccinate lyase; FFAM_ID: lyase_1"</pre>	<pre>/gens=BLR01 /gens=BLR01 /note="CGG family: permeases of the major facilitator superfamily" /codon start=1 /transT table=11 /transT table=11 /prodein id="AAN25584.1" /protein id="AAN2584.1" /protein id="AAN25584.1" /protein id="AAN25584.1" /protein id="AAN25584.1" /protein id="AAN2584.1" /protein id=</pre>
gene CD S	a e C d C	a a b t	2
1 1 1 2 2 2 2 7	<pre>ABO14814 AE014295 AE014814 AE014295 AE014814 I GI:23327097 Bifidobacterium longum NCC2705 Bifidobacterium longum NCC2705 Bifidobacterium longum NCC2705 Bifidobacteriaeaes Bifidobacterium. 1 (bases 1 to 14216) Schell,M.A., Karmirantzou,M., Snel,B.; Vilanova,D., Berger,B., Pessi,G., Zwahlen,MC., Desiere,F., Bork,P., Delley,M., Pridmore,D. and Arigoni,F. The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract proc. Natl. Acad. Sci. U.S.A. 99 (22), 14422-14427 (2002) 12381787 2 (bases 1 to 14216) 2 chell,M.A., Karmirantzou,M., Snel,B., Vilanova,D., Berger,B., Pessi,G. Zwahlen,MC., Desiere,F., Bork,P., Delley,M., Pridmore,D. and Arigoni,F.</pre>	Direct Submit Box 44 Box 44	<pre>/db:rete="di:3337098" /cb:rete="di:3337098" /crianslation="MPOLEDSGTRSLHATEPUPSAEMDGFCRIFGVENTGAE revDagQvAWTMCPPIVSRSRSTWTYLANGSRLYLDVGSHPEYATAEARDPREALAQD LAGEHVMKNLALKAQRKLRESYGAHATINPKNNVD926HAATTAERFVDLET ILAGEHVMKNLALKAQRKLRESYGAHATINPKNNVD926HAATTAERFVDEAT DIDSFRRLHUT1GDSRGSWGTWMKLAVTHLVLCALEDAFRHCVPSGFEQYAFADPAA DDDSFRRLHUT1GDSRGSWGSTWMKLAVTHLVLCALEDAFRHCVPSGFEQYAFADPAA ANTTVSRFLDNPALERGAYDALADVUDMAAKCLFDALKRRPDVTFAQMEQLELDYHD TAMGEWSVLDALERGAYDALADVUDMAKKCLFDALKRRRPDVTFAQMEQLELDYHD TAMGELYSSLVARNQMRELTGSDSVGAAKKCLFDALKRRRPDVTFAQMEQLELDYHD TAMGELYSSLVLDAFERELTGSDSVGAAKKCLFDALKRRRPDVTFAQMEQLELDYHD TAMGELYSSLVLDFFEAEFTLGFEQLMEALN" WTHLTTLPRERREALLLDFFEAEFTLGFEQLMEALN" Complement(1754. 2035) /gene="bytnonym: BL1798" /note="bytnonym: BL1798"</pre>
QY Db QY QY QY QY QY QY QY QY C Db C DD DD DEFINITION	ACCESSION VERSION VERSION KEYWORDS SOURCE ORGANISM AUTHORS AUTHORS AUTHORS	TITLE JOURNAL FEATURES BOURCE Gene CDS	dene CD X

<pre>/note="COG family: uncharacterized Bcr" Ouery Match 91.2%; Score 175.2; DB 1; Length 14216; Beet Local Similarity 97.4%; Pred. No. 1.4e-45; Matches 189; Conservative 0; Mismatches 3; Indels 2; Gaps Matches 189; Conservative 0; Mismatches 3; Indels 2; Gaps 1 [[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[[</pre>	ACTAAGCAAAAGTGCTTGTCCTCGACCC ACTAAGCAAAAGTGCTTGTCCCCTGACCC ACTAAGCAAAAGTGCTTGTCCCCTGACCC	AX492788 156538 bp DNA linear Sequence 1106 from Patent EP1227152. AX492788.1 GI:23338471 Bifidobacterium longum biovar Longum Bifidobacterium longum biovar Longum Batteria; Actinobacteria; Actinobacteridae; Bifit Bifidobacteriaceae; Bifidobacterium. Bifidobacteriaceae; Bifidobacterium. Bifidobacterian and genome of bifidobacterium Bacteria etrain and genome of bifidobacterium Patent: EP 1227152-A 1106 31-JUL-2002; Patent: EP 1227152-A 1106 31-JUL-2002; Cociete des Produits Neetle S.A. (CH) Location/Qualifiers 1. 156638 1. 156638 1. 156638 1. 156648 Produits Neetle S.A. (CH) 1. 1566518 1. 156648 1. 156648 Produits Neetle S.A. (CH) 1. 1566518 1. 1566518	Best splitted-in 7 more sequencesseq 0001: from 000.001 to 0.49.980 length: 34980-seq 1100: from 300.001 to 0.49.980 length: 34980-seq 1101: from 900.001 to 1.249.980 length: 34980-seq 1103: from 200.001 to 1.249.980 length: 34980-seq 1104: from 200.001 to 1.849.980 length: 34980-seq 1104: from 800.001 to 1.849.980 length: 349980-seq 1106: from 800.001 to 2.149.980 length: 349980-seq 1106: from 91.24; Score 175.2; DB 6; Length 15638; 91.24; Score 175.2; DB 6; Length 15638;	189; Conservative 0 185; Conservative 0 167766666666666666666666666666666 6176-AATACCTTCG666666668AAA 6176-AATACCTTCG6666AAA 6176-AATACCTTCG666AAAA 119 ACATG6667A6TATCATTG4 119 ACATG6667A6TATCATTG4 119 ACATG6667A6TATCATTG4 119 ACATG6667A6TATCATTG4 179 AAGAAGGATG67TT 192
<pre>complement(72207585) /gene="BL1802" complement(72207585) /gene="BL1802" /note="COG family: DNA-directed RNA polymerase specialized sigma subunit" /codon start=1 /transTtable=11 /producT="hypothetical protein" /producT="hypothetical" /producT="</pre>	<pre>76107855 76107855 76107855 7600. start=1 7600. start=1 7600.start=1 7 / traneI table=11 7 / product=hypothetical protein" 7 / product=nhypothetical protein" 7 / db xref="GI:23327104" 7 / db xref="GI:23327104" 7 / tranelition="MASASLQIMSARLISISLCRGMGNHKSVELEYLMTPSLPDTFKR 7 / tranelition="MASASLQIMSARLISISLCRGMGNHKSVELEYLMTPSLPDTFKR 7 / tranelition="MASASLQIMSARLISISLCRGMGNHKSVELEYLMTPSLPDTFKR</pre>	complement (7852. 9468) gene="BL1804" complement (7852. 9468) gene="BL1804" codon_start=1 / transl_table=11 / product="hypothetical_protein" / product="hypothetical" / product="h	<pre>comptement(94539800) Gene="BL1805" Complement(94539800) Codon start=1 (transT table=11 (transT table=11 (product="hypothetical protein" /product="hypothetical protein" /protein id="AAN25588.1" /db_rref="G1:3327106" /db_rref="G1:337</pre>	<pre>complement(993310583) complement(993310583) /gene="Bul806" /codon_start=1 /transTtable=11 /protein_id="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein" /protein="hypothetical_protein"/protein" /protein="hypothetical_protein"/protein"/protein"/pr</pre>
gene CDS	gene CDS	gene CDS	gene CDS gene	Gene CDS

ſ

.

•

•

Page 3

us-10-782-899-1_copy_1_192.rge

Mon Aug 8 15:40:17 2005

٠

12005055 2 (bases 1 Kano,Y. Direct Submi Submitted (0 University, Pharmaceutic Kyoto 607841 Tel:81755954	source 1600 /organism="Bifidobacterium longum biovar Longum" /mol_type="genomic DNA" /db_xref="taxon:1679"	<pre>/product="histone-like HU protein HBL" /protein_id="BAB88690.1" /db_xref="c11:1918954" /db_xref="c11:1918954" /db_xref="c11:1918954" /db_xref="c11:1918954" /db_xref="c11:1918954" /db_xref="c11:1018954" /db_xref="c11:1018954" /db_xref="c11:1018954" /db_xref="c11:10184" /db_xref</pre>) <u> </u>	RESULT 6 RESULT 6 AC096816/c 230625 bp DNA linear HTG 10-MAY-2003 LOCUS AC096816 230625 bp DNA linear HTG 10-MAY-2003 DEFINITION Ratus norvegicus clone CH230-171E18, *** SEQUENCING IN PROGRESS ACCESSION AC096816 G 1:30520628 VERSION AC096816 G 1:30520628 KEYWORDS HTG; HTG5 PHASE1; HTGS_DRAFT; HTGS_ENRICHED. ACC96816 G 1:30520628 KEYWORDS Ratus norvegicus (Norway rat) ORGANISM RAtus norvegicus (Norway rat) ORGANISM BRATYOLA; Metazos Chordata; Vertebrata; Buteleostomi; Mammalia; Butheria; Rodentia; Sciurognathi; Muridae; Murinae;	<pre>Raftus. Raftus. 1 (bases 1 to 230625) Muzny.D.Marie., Metzker,M.Lee., Abramzon,S., Adams,C., Alder,J., AUTHORS Muzny.D.Marie., Metzker,M.Lee., Abramzon,S., Anguiano,D., Angulebechi,Y., Aoyagi,A., Ayodeji,M., Baca,E., Baden,H., Baldwin,D. Bandaranaike,D., Barber,M., Barnstead,M., Benahmed,F., Biswalo,K., Blair,J., Blankruburg,K., Blyth,P., Brown,M., Biswalo,K., Bluair,J., Blankruburg,K., Blyth,P., Brown,M., Stant,N., Buhay,C., Burch,P., Burch,P., Burch,P., Erown,M., Cardenas,V., Carter,K., Cavazos,I., Ceasar,H., Center,A., Chacko,J., Chavez,D., Chen,G., Chen,R., Chen,Z., Chu,J., Davila,M.L., Davis,C., Davy-Carroll,L., De Anda,C., Dederich,D., Davila,M.L., Davis,C., Davy-Carroll,L., De Anda,C., Dederich,D.,</pre>
Db 141984 AAGAAGGATGCTTT 141971 Db 141984 AAGAAGGATGCTTT 141971 RESULT 4 AX553955 AX553955 156646 bp LOCUS AX553955 DEFINITION Sequence 9 from Patent W002074798. ACCESSION AX553955.1 G1:25897908 VERSION AX553955.1 G1:25897908		longum biovar Longum' jth 2256646 splitted J-seg 3: from 0.300.00 0.01 to 0.949.980~sec 6: from 1.200.001 to .001 to 1.849.980~sec	2.256. ; Gaps	Qy 1 GCTGGGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGCGC	17.022 ACALGGGATGGTTT 192 17.9 AAGAAGGATGGTTT 192 141992 AAGAAGGATGGTTT 141979 141992 AAGAAGGATGGTTT 141979 141992 AAGAAGGATGGTTT 141979 141972 AAGAAGGATGGTTT 141979 151072 AAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAGAAG	Σ

٠

Center clone name: CH230-171E18 Consensus quality: 197146 bases at least Q40 Consensus quality: 202146 bases at least Q30 Consensus quality coverage: 6x in Q20 bases; sum-of-contigs setimation NOTE: Estimated insert size. Q40/G056 Genbank Kraft data.html). NOTE: This is a vorking draft' sequence. It curitently notes thtp://www.hgsc.betwen the contigs are represented as this record will be updated with the finished sequence this root as it is available and the accession number will this record will be updated with the finished sequence this root will be updated with the finished sequence this root of illes post betwen the contigs are unknown. This record will be updated with the finished sequence the preserved. This record of illes of the gaps at unstruct the preserved. This record of illes post betwen the interpth 5017 55044 contig of 23492 bp in length 5017 55044 contig of 23492 bp in length 5017 55044 contig of 1445 bp in length 5017 52044 contig of 15003 bi in length 5018 5118 220144 app of unknown length 520141 22015 220144 app of unknown length 520145 220144 app of	<pre>(moi type="genumic DNM"</pre>
<pre>Delgado,O., Denson,S., Deramo,C., Ding,Y., Dinh,H., Divya,K., Eraper,H., Escotcha,S., Durn,A., Duval,B., Baves, K., Egan,A., Escotcha,S., Durn,A., Duval,B., Eaves, K., Escert,C., Cabisi,A., Ganta, K., Garcia,A., Garrer,M., Foster, P., Frenser,C.M., Gabisi,A., Ganta, R., Garcia,A., Garrer,M., Garza,M., Gebregocrgia,E., Gert,M., Manil,C., Hamilton,C., Hamilton,K., Gabregocrgia,E., Haaland,W., Hanilton,C., Hamilton,K., Jucker,M., Gabregocrgia,E., Haaland,W., Hamilton,C., Hamilton,K., Garza,M., Garcia,A., Garra,Y., Garza,M., Garrer,M., Gabregocrgia,E., Hinag,H., OhmBon,B., Johnson,R., Juckes,A., Hernandez,R., Hines,S., Huadun,S.L., Hoogson,A., Hogra,A., Jackson,L., Jacob,L., Jiang,H., Johnson,B., Johnson,R., Juckes,A., Karpathy,S., Kelly,S., Kelly,S., Khan,Z., King,L., Kovar,C., Kowis,C., Kraft,C.L., Leongaco,R.J., Liu,J., Juckes,J., Karpathy,S., Kelly,S., Kelly,S., Khan,Z., King,L., Kovar,C., Kowis,C., Kraft,C.L., Londseed,H., Longsore,S., Looper,J., Loreneuhewa,L., Loulseed,H., Longsore,S., Looper,J., Karputhy,S., Manjud,T., Martin,R., Martinez,B., Mangum,B., Manua,P., Martin,K., Martin,R., Martinez,B., Mangun,B., Manua,P., Martin,K., Martin,R., Martinez,B., Mangun,S., Morris,K., Martin,R., Martin,K., Martin,R., Martiney,S., Morris,S., Munidasa,M., Murphy,M., Nair,L., Narker,J., Loulseed,H., Norris,S., Mundensyor,J., Morre,S., Mangun,B., Mortis,K., Norris,S., Mundens,M., Norris,S., Mangu,R., S., Relly,S., Scott,S., Soot,C., Mandelawa,S., Patk,M., Sauten,A., Soot,B., N., Nair,L., Narker,M., Storers,S., Munder,M., Norris,S., Riggi,R., Plopper, P., Suderer,A., Soot,P., Taylor,C., Plopper, P., Suderer,A., Soot,P., Taylor,C., Sander,K., Staten,J., Satech,A., Soot,L., Sitter,P., Yoon,V., Steed,A., Suvertebyn,A., Sissen,I., Waldron,L., Walke,F., Walliams,G., Waltes,Y., Yaka, Soot,C., Saterer,S., Steed,A., Suvertebyn,A., Sissen,I., Sitter, D., Smig,J., Walliams,G., Williams,G., Walter,M., Satek,A., Tabor,F., Walliams,G., Willey,R., Walery,M., Soot,P., Yoon,V., Walds,N., Warten,W., Marten,K., Nalor, P., Noon,V., Wald</pre>	<pre>Kright.D., Wright.R., W.J., Yakub.S., Yen.J., Yoon.J., Yoon, V., Wr.F. Amarg.J. Zhou, J. Zhou, Y. Zhou, X. Zhou, Y. Zhoo, S., Yen.J., Yoon, V., Weinstock, G. and Gibbs, R. A. JOURNAL Unpublished JOURNAL Unpublished Mortey, K.C. JOURNAL Unpublished Mortey, K.C. JUTLE Direct Submission JOURNAL Direct Submission ANTHOR Prize, Human Genome Sequencing Center, Department of Molecular and Human Genome Sequencing Center, Department DOURNAL DOURNAL DOURNAL SOUTH HUMAN Genome Sequencing Center, Department of Molecular and Human Genome Sequencing Center, Department DOURNAL DOURNAL DOURNAL SOUTH HUMAN Genome Sequencing Center, Department DOURNAL DOURNAL SOUTH Sequences and Human Genome Sequencing Center, Department DOURNAL DOURNAL SOUTH Sequences and Molecine, One Baylor Flazz, Houston, TX 77030, USA Submitted (10-MY-2003) Human Genome Sequencing Center, Department DOURNAL DOURNAL DOURNAL SOUTH HUMAN GENOM CONTEGE SCHOMENT DIFECT SUBMISSION DIFECT SUBMISSION DMARTON PARTER SCHOME FOR SEGUENCING CONTEGE SCHOMENT DMARTER SUBMISSION DMARTER SCHOMENT SCHOMENT PARTER SCHOMENT PARTER DMARTER SCHOMENT PARTER SCHOMENT PARTER SCHOMENT PARTER DMARTER SCHOMENT PARTER SCHOMENT PARTER SCHOMENT PARTER SCHOMENT PARTER SCHOMENT PARTER SCHOMENT PARTER PARTER SCHOMENT PARTER PARTER SCHOMENT PARTER PARTER</pre>

Page 5

Mon Aug 8 15:40:17 2005

2

8

us-10-782-899-1_copy_1_192.rge

Direct Submission Direct Submission of Molecular and Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA On Nov 20, 2002 this sequence version replaced gi:23666770. The sequence in this asequencing reads assembled using Atlas and whole genome shortgun sequencing reads assembled using Atlas (http://www.hgsc.bcm.tmc.edu/projects/rat/). Each contig described in the feature table below represents a scaffold in the Atlas assembly (a 'contig-scaffold'). Within each contig-scaffold, individual sequence ontig9 are ordered and oriented, and sequence may extend beyond the ends of the clone and there may be sequence contigs within a contig-scaffold that consist entirely of whole genome shortgun sequence reads. Both end sequences and whole genome Allen.C. Allen.H. Alsbrooks.S. Amin.A. Anguiano.D. Baldwino.K. Blairz.J. Ayodeji.M. Barnstead.M. Burnstl.K. Owoler. Budden.B. Cascos. Chav.S. Chav.S. Chavs. C. Bary. Cart. Caves. Chen.K. Cavesos. M. Carter.M. Cavesos. M. Carter.M. Cavesos. M. Carter.M. Cavesos. M. Carter.M. Busyla.M.L. Davyla.C. Davyla.C. Cockrell R. Cox. C. Coyle.M. Cree.A. D'Soura.L. Daval.C. Davyla.M. Bernandez.S. Pann.G. Paragen.M. Bean.G. Barnad.M. Surgene.C. Davyla.M. Carter.M. Feast.R. Garta.M. Garta.R. Gener.R. Garta.M. Garta.R. Gener.R. Garta.M. Guntarten.P. Hauland.M. Flago.M. Gartar.M. Garta.M. Guntarten.P. Hauland.M. Havlak.P. Hamilton.C. Hamilton.K. Mand. M. Guntarten.P. Handler.M. Flago.M. Guntarten.M. Guverra.M. Guver Submitted (26-MAY-2002) Human Genome Sequencing Center, Department for Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA 3 (Dases 1 to 246991) Rat Genome Sequencing Consortium. (bases 1 to 246991) Worley,K.C. Direct Submission

TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL

AUTHORS TITLE JOURNAL REFERENCE

COMMENT

shotgun sequence only contigs will be indicated in the feature

	table. Genome Center Center: Baylor College of Medicine Center code: BCM
	ce: htt :: hgsc Pr
	ame am:
	quality: 225722 bases at quality: 228759 bases at muality: 220490 bases at
	8; sum-of-con bases; sum-of
	timeted insert size may differ tp://www.hgsc.bcm.tmc.edu/doce disworking draft' semience
	consists of 1 contigs. Ga are represented as runs of the constant of 2 contigs.
	of the gaps between them are based on e provided by the submittor.
	I be rep. equence a
FEATURES	1 246991: contig of Location/Qualifiers
source	1246991 /organism="Rattus norvegicus" /~~1 +
	/db_zref=rtayon:101.6 /db_zref=rtayon:10116 /clone=rCH230-1788"
	/note="wgs_contig"
misc_fe	<pre>feature complement(238413239222) /note="clone_boundary clone_end:Sp6</pre>
misc_fe	ente: ente: feature 244729. 246991 /note="wgs_end_extension
ORIGIN	clone_end:Sp6"
Query Match Best Local Matches 7	ch 19.1%; Score 37; DB 2; Length 246991; 1 Similarity 54.9%; Pred. No. 1.2; 73; Conservative 0; Mismatches 60; Indels 0; Gaps 0;
õ	29 GACAAGCATAATCTTGATTCGTCTATTTTCCAATACGTGGGGGAAATAGATGTGGAA 88
Db 67	6776 GAAAAACCCATTTATGTCTAAGAGCTCTATGCAGATATCTAACTTCTAAAGGAACATAAA 6717
QY	89 AACCCTTATAAAACGCGGGTTTTCGCAGAAACATGCCGCTAGTACATGATGATGACAACATG 148
Db 67:	6716 AATACTTTTCAAACATGTATTTTTCTTÄGTÄGGÄTGAGGTÄGTÄGTÄCTTCTTTAACCCTAG 6657
Qy 1.	149 GACTAAGCAAAAG 161
Db 66	6656 GACTAGGCAGGG 6644
RESULT 8 AL671518 LOCUS	All671518 67395 bp DNA linear PRI 16-FEB-2002 11 brin common from clone Bb11.21506 on chromosome 6. commlete
NOTITNIJED	
ACCESSION VERSION KEYWORDS	AL671518 AL671518.3 GI:18855253 AL671518.3 GI:18855253

2 [Dases 1 to 28549] 2 [Birren,B., Linton,L., Nusbaum,C., Lander,E., Ali,A., Allen,N., Birren,B., Linton,L., Nusbaum,C., Lander,E., Ali,A., Allen,N., Brown,A., Camarata,J. Campopiano,A., Chang,J., Chazaro,B., Brown,A., Camarata,C., Campopiano,A., Chang,J., Chazaro,B., Choepel,Y., Colangelo,M., Collins,S., Collymore,A., Cook,A., Cooke,P., PartzHulano,K., Dewar,K., Diaz,J.S., Dodge,S., Faro,S., Ferreira,P., Heaford,A., Horton,L., Hulme,W., Tliev,I., Johnson,R., Jones,C., Kamat,A., Karatas,A., Kells,C., LaRocque,K., Lamazares,R., Landers,T., Lehoczky,J., Levine,R., Liu,G., McCarthy,M., McEwan, P., McPheeters,R., Meldrm,J., McCarthy,M., McEwan,P., McPheeters,R., Liu,G., McCarthy,M., McBwan,P., McHens,K., Naylor,J., Nguyen,C., Norbu,C., Netta,R., Phunkhang,P., Pilley,R., Kiley,G., Oliver,J., Pettaran,K., Phunkhang,P., Naylor,J., Nguyen,C., Rayan,S., Severti,M., Rolmell,P., O'Donnell,P., O'Neil,D., Roman,J., Reterson,K., Phunkhang,P., Pinere,N., Pollara,V., Strauss,N., Subraman,A., Talamas,J., Testrae,N., Pollara,V., Viel,R., Yo,A., Wilson,B., Wu,X., Wyaan,D., Ye,M.J., Young,G., Zainoun,J., Zembek,L., Zimmer,A., and Zody,M. Lirect Submission Lirect Submission Submitted (23-NOV-2001) Whitehead Institute/MIT Center for Genome Research, 320 Charles Street, Cambridge, MA 02141, USA Research, 320 Charles Street, Cambridge, MA 02141, USA Birren, B., Nusbaum, C., Lander, B., Abouelleil, A., Allen, N., Anderson, M. Arachchi, H.M., Barna, N., Bastien, V., Bloom, T., Birren, S., Nocka, Cooke, P., Commarta, J., Choepel, Y., Collymore, A., Cooke, P., Comm, B., DeArellano, K., Diaz, J.S., Dodge, S., Dooley, K., Dorru, B., BeArellano, K., Collymore, A., Cooke, P., Corum, B., DeArellano, K., Collymore, A., Cooke, P., Corum, B., Bearellano, K., Collymore, A., Cooke, P., Corum, B., Bearellano, K., Collymore, A., Cooke, P., Corum, B., Bearellano, K., Diaz, J.S., Dodge, S., Dooley, K., Dorru, B., Bearellano, K., Collymor, FitzGeradd, M., Gage, D., Galagan, J., Gardyna, S., Graham, L., Grand-Pierre, N., Hafez, N., Hagopian, D., Hagos, B., Hail, J., Horton, L., Hulme, W., Tilser, N., Machan, C., Macdonald, P., Major, J., Manthews, C., Macthews, C., Nors, C., Lindblad-Toh, K., Liu, X., Lui, A., Mablitt, R., Machean, C., Macdonald, P., Major, J., Manbur, R., Machean, C., Nguyen, C. Nicoll, R., Norbu, C., O'Connor, T., O'Donnell, P., O'Neil, D., Olliver, J., Rethaws, C., Nethukhang, P., Naylor, J., Nguyen, D., Schauer, S., Schupback, R., Seaman, S., Severy, P., Smith, C., Spencer, B., Schupback, K., Seaman, S., Severy, P., Smith, C., Nassiliev, H., Venkataraman, V., S., Viel, R., Voy, A., Wilson, B., Wu, X., Nyasni, D., Young, G. Zainoun, J., Zembek, L., Zimmer, A. and Zody, M., Direct, Submission. Mus musculus chromosome 17 clone RP23-55C11 map 17, *** SEQUENCING Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Buteleostomi; Mammalia; Butheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 (bases 1 to 285493) Web site: http://www-seq.wi.mit.edu Contact: sequence submissions@genome.wi.mit.edu ------ Project Information ACIO1665.4 GI:45680671 HTG; HTGS PHASE1; HTGS FULLTOP; HTGS ACTIVEFIN. Mus musculus (house mouse) Mus musculus Birren, B., Nusbaum, C. and Lander, E. Mus musculus chromosome 17, clone RP23-55C11 Unpublished IN PROGRESS ***, 10 unordered pieces. Center code: WIBR AC101665 DEFINITION SOURCE ORGANI SM TITLE JOURNAL AUTHORS TITLE JOURNAL JOURNAL ACCESSION VERSION KEYWORDS REFERENCE AUTHORS REFERENCE AUTHORS REFERENCE TITLE COMMENT Liracety.htm Interect Submission Direct Submission Submitted (16-FBB-2002) Wellcome Trust Sanger Institute, Hinxton, cambridgeshire, CB10 15A, UK. B-mail enquiries: humquery@sanger.ac.uk Clone requests: clonerequest@sanger.ac.uk On Feb 21, 2002 this sequence version replaced gi:18491488. During sequence assembly data is compared from overlapping clones. Where differences are found in the sequence submission corresponding to the overlapping clone name. Note that the variation annotation may not be found in the sequence submission corresponding to the overlapping clone name. Note that the variation annotation may not be found in the sequence submission corresponding to the overlapping clone, as we submit sequences with only a small overlap as described above. Tegions were either double-stranded or sequenced with an alternate chemistry or covered by high quality data (i.e., phred quality >= chemistry or covered by high quality data (i.e., phred plasmid subclone or more than one M13 subclone; and the assembly was confirmed by restriction digest. The following absrevitions and repeats; all regions were covered by at least one plasmid subclone or more than one M13 subclone; and the assembly was confirmed by restriction digest. The following absrevitions and repeats; Information on the WoRWPEP in the feature table with their source databases: Em, EMBL; Swi, SWISSFROT; Tr:, TREMBL; Wp:, WORMPEP; Information on the WoRWPEP in the feature table with their source databases: Em, FMBL; Swi, SWISSFROT; Tr:, TREMBL; Wp:, Constructed by the Sanger center Chromosome 6 Mapping drabase can be found at http://www.sanger.ac.uk/FOF/Chro fromosome 6; constructed by the Sanger center Chromosome 6 Mapping from; Puttp://www.chori.org/bacpac/home.htm thtp://www.chori.org/bacpac/home.htm twoormant.mtps://mation farmation farmation for the structed thttp://www.chori.org/bacpac/home.htm 15983 ČAAAATAATTTCCAATATATATAAATACCCTTAATTGGAAAGATCTCATATCCCA 16042 16043 TATTATAAAGTGGTTCTAGCAACTATACAĆTATAAAATĆCTTTGGGAAGATATGAATGTG 16102 ô HTG 24-MAR-2004 IMPORTANT: This sequence is not the entire insert of clone RP11-315C6 It may be shorter because we sequence overlapping sections only once, except for a short overlap. The true left end of clone RP1-71D21 is at 65396 in this sequence. The true right end of clone RP11-403119 is at 2000 in this TATAAAACGCGGGTTTTTCGCAGAAACATGCGCTAGTATCATTGATGACAACATGGACTAA 154 35 CATAATCTTGTCTGATTCGTCTTTTCAATACCTTCGGGGAAATAGATGTGAAAACCCT 94 Eukaryoča; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Hominidae; Homo. 1 (bases 1 to 67395) Gaps ; 0 19.0%; Score 36.4; DB 9; Length 67395; ilarity 54.5%; Pred. No. 1.8; Conservative 0; Mismatches 61; Indels 0; linear DNA 1. .67395 ∕organism="Homo sapiens" DNA" 285493 bp /clone="RP11-315C6" /clone_lib="RPCI-11.2" /mol_type="genomic DN /db_xref="taxon:9606" Location/Qualifiers /chromosome="6" 16103 GCTAAGCCTCATGT 16116 155 GCAAAGTGCTTGT 168 sapiens (human) Query Match Best Local Similarity Matches 73; Conserval Homo sapiens sequence. racey, A AC101665 Ното 95 0 source ORGANISM REFERENCE AUTHORS TITLE JOURNAL RESULT 9 AC101665 LOCUS FEATURES COMMENT ORIGIN SOURCE q ዋ à å 8 8

1_copy_1_192.rge Page 8	REFERENCE 2 (bases 1 to 170350) AUTHORS Sulston,J.E. and Wilson,R. TITLE Sequencing of Pan troglodytes JUTHORS Sulston,J.E. and Wilson,R. JUTHORS Sulston,J.E. and (2001) REFERENCE 3 (bases 1 to 170350) AUTHORS Waterston,R. JUTHORS Direct Submission JUTHORS Direct Submission JUTHORS University, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA WISSON,R. Direct Submission JUTHORS Wissouri 63108, USA AUTHORS Wissour, 4444 Forest Park Avenue, St. Louis, Missouri 63108, USA AUTHORS Wisson,R. Direct Submission JUTHORS Wissouri 63108, USA AUTHORS Wissouri 63108, USA AUTHORS Wissouri 63108, USA AUTHORS Wissouri 63108, USA AUTHORS Wissouri 63108, USA COMMENT Center: Washington University Genome Sequencing Center Center Code: WUGSC Web site: http://genome.wustl.edu	Center project name: C_PT022112 	this clone was provided by Dr. We Washington University, St. Louis about the map position of this sec has been constructed by Chung-Li blood cells obtained from a male ', Yerkes #C0471; birthdate: 6-6-1 rmation can be obtained from XesGe	<pre>(ntcp://www.resgen.com/ of right de ouig and de worker de http://www.bacpac.chori.org. NEIGHBORING SEQUENCE INFORMATION: This sequence is the entire insert of the clone. FEATURES Location/Qualifiers source 11703califiers /organism="Pen troglodytes" /organism="Pen troglodytes" /db_rref="taxon:9598"</pre>	(clone="Re43-2112" /clone="Re43-22112" /clone="Re43-22112" /clone_lib="RPCI-43" ORIGIN 18.6%; Score 35.8; DB 9; Length 170350; Best Local Similarity 63.2%; Pred. No. 2.9; DB 9; Length 170350; Matches 55; Conservative 0; Mismatches 32; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 32; Indels 0; Gaps 0; D 144944 CCAGGGCTGGGTTGATAATCTTGTCTGATTTTTAATTTTCAATAACTTTGGG 74 DD 144944 CCAGGGCTGGGTTGATAATTTTTTAATTTTCTCTATGTTTAAAACATTTTAT 145003 Qy 75 GAAATGGTGGGAAAGCCTTATAAAA 101 Qy 75 GAAATGGTGGAAAGCCTTATAAAA 101
Mon Aug 8 15:40:17 2005 us-10-782-899-1	project name: Li clone name: 55_C of lo contige: T of lo contige: T data working of lo contige: T data their or data their data th	178642 178941: CONTENT OF 17.00 bp 178642 178941: CONTENT OF 25973 bp in 204715 204714: Gap of 100 bp 204715 204714: Gap of 100 bp 240583 246582: Gap of 100 bp 240583 246467: Gap of 100 bp 24658 250304: CONTENT OF 5685 bp in 24658 250304: CONTENT OF 5885 bp in 24658 250304: CONTENT OF 5885 bp in 24658 250304: CONTENT OF 5985 bp in 256305 250404: Gap of 100 bp 2550405 255044: Gap of 100 bp 2550405 255044: Gap of 100 bp 2550405 255044: Gap of 100 bp 10. 285493: CONTENT OF 5985 bp in 1. 285493: CONTENT OF 5985 bp in 1. 2859493: CONTENT OF 5985 bp in 1. 2850405 250044: Gap of 100 bp 2550405 2503044: Gap of 100 bp 1. 2850405 2503044: Gap of 100 bp 2550405 2503044: Gap of 100 bp 266383 250304: CONTENT OF 5985 bp in 1. 2850405 2503044: Gap of 100 bp 1. 2850405 2503044: Gap of 100 bp 266383 250304: CONTENT OF 5985 bp in 1. 2850405 2503044: Gap of 100 bp 266383 250304: CONTENT OF 5985 bp in 266383 250304: Gap of 100 bp 266383 2500000000000000000000000000000000000		Db 194920 GGGATTCTGGTGGCGCTTCACATCACTGCCTGATGATAAGTGCCGGTATTGCTGC 194990 Qy 73 GGGAAATAGATGGTGAAAACCCTTATAAAACGCGGGGGTTTTCGCAGAAACATGCGCTAGTAT 132 Qy 13 1	RESULT 10 AC140952 AC140952 170350 bp DNA linear PRI 26-SEP-2003 LOCUS Pan troglodytes BAC clone RP43-22112 from 7, complete sequence. DEFINITION Pan troglodytes BAC clone RP43-22112 from 7, complete sequence. ACCESSION AC140952.1 G1:28850254 ACC40952.1 G1:28850254 Free Pan troglodytes (chimpanzee) SOURE Pan troglodytes (chimpanzee) Pan troglodytes (chimpanzee) CRGANISM Pan troglodytes (chimpanzee) Pan troglodytes (chimpanzee) ACCANISM Pan troglodytes (chimpanzee) Pan troglodytes (chimpanzee) Pan troglodytes (chimpanzee) ACCANISM Pan troglodytes (chimpanzee) ACCANISM Pan troglodytes (chimpanzee) ACCANISM Pan troglodytes (chimpanzee) ACTHORS Pan troglodytes PAC clone RP43-22112 AUTHORS Pan. AUTHORS Pan troglodytes BAC clone RP43-22112 AUTHORS Pan troglodytes BAC clone RP43-22112 AUTHOR (ppublished (2001)

•

Page 8

2005
15:40:17
ω
Aug
Mon

¥

٦

 NOTE: This is a 'working draft' sequence. It currently NOTE: This is a 'working draft' sequence. It currently consists of 4 contigs. Gaps between the contigs are represented as runs of N. The order of the pieces is believed to be correct as given, however the sizes of the gaps between them are based on estimates that have provided by the submittor. This sequence will be replaced by the finished sequence as soon as it is available and by the finished sequence as soon as it is available and the accession number will be preserved. 82248 83347; contig of 1413 bp in length 82348 83760; contig of 1413 bp in length 82349; gagodi of unknown length 82341; gagodi of unknown length 82341; gagodi of unknown length 	<pre>* 168250 168349; gap of unknown length * 168250 171239; contig of 2890 bp in length. * 168350 171239; contig of 2890 bp in length. FEATURES 1. 171239 source 0.reganiam="Pan troglodytes" /mol type="genomic DNA" /mol type="genomic DNA" /db zref="taxon:959" /db zref="taxon:950" /db zref="taxon:950" /</pre>	JenBan SenBan SenBan Siter	Query Match18.6%; Score 35.8; DB 2; Length 171239;Best Local Similarity 63.2%; Pred. No. 2.9;32; Indels 0; Gaps 0;Matches 55; Conservative 0; Mismatches 32; Indels 0; Gaps 0;Qy15 CCATGAAGGGTTAGACAAGGATAATCTTGTCGTCGATTTTCAATACCTTCGGG 74Qy15 CCATGAAGGGTTAGACAAGGATAATCTTGTCGTCGATTTTTCAATACCTTCGGG 74Qy145797 CCAGGGCTGGCATAGATCATATTTTTAATTTTCATGGTTAAAGATTTAT 145856Qy75 GAAATAGGTGGCTACATAAAAAAA 101Qy75 GAAATAGGTGGTACTAAAAAAA 101Db14587 ATAGGCATTGAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	RESULT 12 AC098646 AC098646 171391 bp DNA linear HTG 13-JUN-2002 LOCUS AC098646 AC0916446 171391 bp DNA linear HTG 13-JUN-2002 DEFINITION Pan troglodytes clone RP43-4466, WORKING DRAFT SEQUENCE, 4 ordered ACC98646 C GT:21397305 AC098646.2 GT:21397305 HTG; HTGS_PHASE2; HTGS_DRAFT. ACC98646.2 GT:21397305 HTG; HTGS_PHASE2; HTGS_DRAFT. AC098646.2 GT:21397305 SURCE Pan troglodytes (chimpanzee) AC098646.2 GT:21397305 KETWORDS HTG; HTGS_PHASE2; HTGS_DRAFT. Pan troglodytes (chimpanzee) ORGANISM Pan troglodytes (chimpanzee) ACOMISM Pan troglodytes (chimpanzee) Antrodiction (chimpanzee) Adveryota; Butheria; Primates; Catarthini; Hominidae, Pan. Adveryota; Muthorelia; Primates; Catarthini; Hominidae, Pan. Adveryota; Mandonelia; Avele,K., Beckstrom-Sternberg,S.M., Benjamin,B., Blakesley,R.W., Bouffard,G.G., Breen,K., Brinkley,C., Benjamin,B., Dietrich,N.L., Granite,S., Guan,X., Gupta,J.,
<pre>Db 145004 ATAAGCATTTTGAAAACACTTAAAAA 145030 RESULT 11 RESULT 11 AC092873 AC092873 171239 bp DNA 1inear HTG 12-JUN-2002 DEPINITION Pan troglodytes clone RP43-22112, WORKING DRAFT SEQUENCE, 4 ordered DEPINITION Pan troglodytes clone RP43-22112, WORKING DRAFT SEQUENCE, 4 ordered ACCESSION AC092873.3 GI:21392490 ACCESSION AC092873.3 GI:21392490 KEYWORDS HTG; HTGS PHASE2; HTGS DRAFT SOURCE Pan troglodytes (chimpanzee) ORGANISM Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; </pre>	<pre>Mamalia; Eucheria; Primates; Catarrhini; Hominidae; Fan. Maralia; Eucheria; Primates; Catarrhini; Hominidae; Fan. AUTHORS Akhter,N. Anconellis,A., Ayele,K., Beckstrom-Sternberg,S.M., Brooks,S., Dietrich,N.L., Granite,S., Guan,X., Gupta,J., Haghighi,P., Hansen,N.L., Granite,S., Guan,X., Karlins,E., Laric,P., Lee-Lin,SQ., Legaspi,R., Maduro,Q.L., Maduro,V.B., Margulies,E.H., Massiello,C., Maskerian,S.D., Margulies,E.H., McDowell,J., Paquirigan,C., Pearson,R., Portnoy,M.E., Prasad,A., Schneler,M.G., Stantripp,S., Thomas,J.W., Thomas,P.J., Touchman,J.W., Tsurgeon,C., Vogt,J.L., walker,M.A., Wetherby,K.D., Waggins,L., Tsurgeon,C., Vogt,J.L., walker,M.A.,</pre>	TITLE NISC Comparative Sequencing Initiative JOURNAL Unpublished REFERENCE 2 (bases 1 to 171239) AUTHORS Green, E.D. TITLE Direct Submission JOURNAL Grovemont Circle, Gaithersburg, MD 20877, USA Grovemont Circle, Gaithersburg, MD 20877, USA REFERENCE 3 (bases 1 to 171239) REPERSINCE 3 (bases 1 to 171239) RUTHORS Direct Submission TITLE Direct Submission TITLE Direct Submission TITLE Comment Circle, Gaithersburg, MD 20877, USA AUTHORS Direct Submission TITLE Submitted (12-UUT-2002) NIH Intramural Sequencing Center, 8717 JOURNAL Submitted (12-UUT-2002) NIH Intramural Sequencing Center, 8717 Convent Circle, Gaithersburg, MD 20877, USA TITLE Submitted (12-UUT-2002) NIH Intramural Sequencing Center Circle, Gaithersburg, MD 20877, USA COMMENT On Jun 12, 2002 this sequence version replaced gi:15799603. COMMENT Conter orde: NISC Conter code: NISC	The sequence data in this record represents an 'enhanced' Center project name: ani Center clone name: 022112 The sequence data in this record represents an 'enhanced' version of a Phase 2 submission. Specifically, the indicated order and orientation of each sequence contig has been established using one or more of the following: read-pair data from individual subclones, overlaps with neighboring clones, alignment with available reference sequence (e.g., human), and/or confirmation by PCR testing. In addition, the sequence assembly is based on at least 8% average	coverage in Q20 bases and has been reviewed to rule out gross misassemblies, the low-quality ends of sequence contrigs have been trimmed away, and each base is associated with a phrap-derived quality score.

2005
Ō
0
2
17
Ч
••
40
••
15
н
ω
Aug
Þ
4
R
Mon
Σ

Haghighi, P., Hansen, N., Ho, S.-L., Idol, J.R., Karlins, E., Laric, P., Lee-Lin, S.-O., Legaspi, R., Maduro, Q.L., Maduro, V.B., Margulies, E.H., Masiello, C., Maskeri, B., Martrian, S.D., McCloskey, J.C., McDowell, J., Paguirigan, C., Pearson, R., Portnoy, M.E., Prasad, A., Schueler, M.G., Stantripop, S., Thomas, J.W., Thomas, P.J., Touchman, J.W., Tsurgeon, C., Vogt, J.L., Walker, M.A., Wetherby, K.D., Wiggins, L., Young, A., Zhang, L.-H. and Green, E.D. Unpublished NOTE: This is a 'working draft' sequence. It currently consists of 4 contrigs. Gaps between the contrigs are represented as runs of N. The order of the pieces is believed to be correct as given, however the sizes of the gaps between them are based on estimates that have provided by the submittor.
This sequence as soon as it is available and by the finished sequence as soon as it is available and the accession number will be replaced.
The accession number will be preperved.
The accession number will be preperved.
The accession number will be protect as 12,570 bp in length 21,571 55729; contig of 21570 bp in length 57731 57729; gap of unknown length 105821 105920; gap of unknown length 105821 105920; gap of unknown length 105921 105920; gap of unknown length 105920; gap of unknown le Green.p.v. Direct Submission Submitted (13-JUN-2002) NIH Intramural Sequencing Center, 8717 Grovemont Circle, Gaithersburg, MD 20877, USA On Jun 13, 2002 this sequence version replaced gi:16506408. Direct Submission Submitted (27-OCT-2001) NIH Intramural Sequencing Center, 8717 Grovenut Circle, Gaithersburg, MD 20877, USA 3 (bases I to 171391) Web site: http://www.nisc.nih.gov Contact: nisc_zoo@nhgri.nih.gov ------- Project Information Center project name: anj Center clone name: 044G06 2 (bases 1 to 171391) Green, E.D. Center code: NISC .171391 -Green, E.D source TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL FEATURES COMMENT

S
00
0
2
5
ч
••
ο
4
••
ŝ
H
ω
ω
Aug
Aug
Aug
Aug
on Aug
Aug
Aug

١

<pre>SOURCE Papio anubis (olive baboon) ORGANISM Papio anubis ORGANISM Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Catarrhini; Cercopithecidae; Cercopithecinae; Papio. REFERENCE 1 (bases 1 to 191622) AUTHORS Antonellis,A., Ayele,K., Benjamin,B., Blakesley,R.W.,</pre>	<pre>Bouffard.G.G., Brinkley.C., Brooks.S., ChuG.J. Coleman.B., Coleman,H., Daki,N., Engle,J., Guan,X., Gupta,J., Haghighi,P., Han,J., Hangen,N., Ho.SL., Hu,P., Hurle,B., Idol,J.R., Jones,C., Karlins,E., Kim,H., Kwong,P., Laric,P., Larson,S., Lee-Lin,SQ., Legaspi,R., Maskeri,B., Maduro,V.B., Margulies,E.H., Masiello,C., Maskeri,B., McDowell,J., Mullikin,J.C., Paguirigan,C., Park,M., Portnoy,M.E., Prasad,A., Puri,O., Reddix-Dugue,N., Thomas,J.W., Thomas, P.J., Tsipouri,V., Yogt,J.L., Wetherby,K.D., Thomas,J.W., Thomas, P.J., Tsipouri,V., Yogt,J.L., Wetherby,K.D.,</pre>		AUTHORS Greent S.J. TITLE Direct Submission JOURNAL Submitted (08-JUL-2004) NIH Intramural Sequencing Center, 8717 JOURNAL Submitted (08-JUL-2004) NIH Intramural Sequencing Center, 8717 COWMENT On JUL 8, 2004 this sequence version replaced gi:48057351. COMMENT On JUL 8, 2004 this sequence version replaced gi:48057351. COMMENT On JUL 8, 2004 this sequence version replaced gi:48057351. COMMENT On JUL 8, 2004 this sequencing Center Center: NIH Intramural Sequencing Center Center: NIH Intramural Sequencing Center Center code: NISC Web site: http://www.nisc.nih.gov Contact: nisc.zoo@hfgri.nih.gov Center forolect Information Center clone name: 41E01	The sequence data in this record represents an 'enhanced' version of a phase 2 submission. Specifically, the indicated order and orientation of each sequence contig has been established using one or more of the following: read-pair data from individual subclones, overlaps with neighboring clones, alignment with available reference sequence (e.g., human), and/or contirmation by PCR testing. In addition, the sequence assembly is based on at least BX average coverage in Q20 bases and has been reviewed to rule out gross misassemblies, the low-quality ends of sequence contigs have been trimmed away, and each base is associated with a Phrap-derived quality score.	Sequencing vector: plasmid; n/a; 100% of reads Chemistry: Dye-terminator Big Dye; 100% of reads Assembly program: Phrap; version 0.990319 Consensus quality: 180653 bases at least Q40 Consensus quality: 180918 bases at least Q30 Consensus quality: 181167 bases at least Q30 Insert size: 181322; bar-of-contigs Quality coverage: 10.99x in Q20 bases; sum-of-contigs Quality coverage: 10.91x in Q20 bases; sum-of-contigs Quality coverage: 10.91x in Q20 bases; sum-of-contigs	 consistent of a controps warp between the order of the pieces are represented as runs of N. The order of the pieces is believed to be correct as given, however the sizes of the gaps between them are based on estimates that have provided by the submittor. This sequence will be replaced by the finished sequence as soon as it is available and the accession number will be preserved. the accession number will be preserved.
Sequencing vector: plasmid; 100% Chemistry: Dye-primer ET; 0% of reads Chemistry: Dye-terminator Big Dye; 100% of reads Assembly program: Pirzap; Version 0.990319 Consensus quality: 186628 bases at least 040 Consensus quality: 187038 bases at least 020 Consensus quality: 187038 bases at least 020	 NOTE: This is a "working draft sequence. It currently NOTE: This is a "working draft sequence. It currently consists of 6 contigs. The true order of the pieces is not known and their order in this sequence record is arbitrary (app between the contigs are represented as runs of N, but the exact sizes of the gaps are unknown. This record will be updated with the finished sequence as on as it is available and the accession number will 	25061 3117 3117 3217 3217 25061 102774 102774	8727 8737	<pre>misc_feature 3217. :24560 misc_feature 7. :24560 clone_end:T7 misc_feature 7102773 misc_feature 7102773 /note="assembly_name:Contig21 /note="assembly_name:Contig21 clone_end:SP6 misc_feature 102874. 18769 misc_feature 102874. 18769 misc_feature 187370188467_name:Contig2" 0RIGIN</pre>	Query Match18.6%Score 35.8DB 2Length 188467Best Local Similarity63.2%Pred. No. 2.99Matches55Conservative0Mismatches32Qy15CCATGAAGTGGCTTGACAGGCATAATTGTTGTCGTGGTGTGTGT	RESULT 14 AC149460/c AC149460 181622 bp DNA linear HTG 08-JUL-2004 LOCUS AC149460 anubis clone RP41-441E1, WORKING DRAFT SEQUENCE, 4 ordered DEFINITION Papio anubis clone RP41-441E1, WORKING DRAFT SEQUENCE, 4 ordered ACCESSION AC149460 A

•

REFERENCE AUTHORS TITLE JOURNAL

TITLE JOURNAL REFERENCE AUTHORS TITLE JOURNAL

COMMENT

Egen.A. Becotco,W. Bugene.C. Fvene.C.A. Falls.T. Fan.G. Ferendee.S. Franky.W. Fagag.N. Gorbes.L. Foster.M. Descer.M. Freestork. Schlad.A. GartyR. Gortes.L. Foster.M. Bearliero.K. Banlicon.K. Bollans.J. Hand.S. Hume.J. Kanly.K. Banlicon.K. Bollans.J. Bollans.S. Homes.J. King.L. Market.B. S. Hilly.K. Kanly.K. Karket.B. Bollans.F. Mil. J. Liku.J. Liku.J. Liku.J. Liku.J. Liku.J. Liku.J. Liku.J. Kanly.K. Market.B. M. Malmod.M. Malmod.M. Mattond.M. M. Mattond.M. Mattond.

Center project name: GMWC Center clone name: CH230-66D24 ------ Summary Statistics

NOTE: Estimated insert size may differ from sequence length (see http://www.hgsc.bcm.tmc.edu/docs/Genbank_draft_data.html). NOTE: This is a 'working draft' sequence. It currently consists of 3 contigs. The true order of the pieces is not known and their order in this sequence record is arbitrary. Gaps between the contigs are represented as runs of N, but the exact sizes of the gaps are unknown. This record will be updated with the finished sequence as soon as it is available and the accession number will be preserved. ö 9334 GCCTTTAAGGGTGTAAGCACACCACCACGCTGCTTATTGTGTACAGGCTTCAT 9393 9394 reaaaheraacheedaracaraaahreedeedeerririreeacacaeraheaarreeree 9453 74 GGAAATAGATGTGAAAAACCCTTATAAAACGCGGGGTTTTCGCAGAAACATGCGCTAGTATC 133 14 GCCATGAAGTGGCTTGACAAGCATAATCTTGTCTGATTCGTCTAATACCTTCGG 73 Consensus quality: 226512 bases at least Q40 Consensus quality: 227588 bases at least Q30 Consensus quality: 227588 bases at least Q30 Estimated insert 282638 bases at least Q20 Bstimated insert 282634; sum-of-contigs estimation Quality coverage: 10x in Q20 bases; sum-of-contigs estimation Gaps ; 0 Query Match18.2%;Score 35;DB 2;Length 231844;Best Local Similarity55.3%;Pred: No. 5.4;Matches68;Conservative0;Matches68;Conservative0;Mismatches55;Indels0 229543: contig of 229543 bp in length
 229543: gap of unknown length
 230670: contig of 1027 bp in length
 230770: gap of unknown length
 231844: contig of 1074 bp in length.
 Location/Qualifiers 231844
 /organism="Rattus norvegicus" /moltype="genomic DNA" /db Tref="taxon:10116"
 /clone="CH230-66D24" 1. .2343 /note="wgs_end_extension clone_end:T7" complement(2941. .3750) /note="clone_boundary clone_end:T7 /note="wgs_end_extension
clone_end:Sp6" end sequence:BH264906" 182235. 225520 /note="clone boundary clone end:Sp6 site:EcoRI Assembly program: Atlas 3.0; Search completed: August 6, 2005, 00:35:05 Job time : 1522.26 secs sequence:BH264909" . .229543 site:EcoRI end_sec 227512. 229544 229644 230671 230771 9454 ATT 9456 **134 ATT 136** misc_feature misc_feature misc_feature misc_feature source FEATURES ORIGIN å 8 đ δ ą 6 .

THIS PACE BLAMK (USP)

• • •

ſ

4

2005
15:40:17
ω
Aug
Mon

۲.

3

29.8 15.5 115829 13 ABD33448 29.6 15.4 2000 8 ADA71889 29.6 15.4 260027 11 ACN44046 29.4 15.3 487 9 ACH25462	29.4 15.3 768 10 29.4 15.3 768 10 29.4 15.3 2000 10 29.4 15.3 2000 10 29.4 15.3 2414 4 29.4 15.3 2537 4	31 29.4 15.3 2719 4 ABL06226 32 29.4 15.3 3612 13 ADT47758 33 29.4 15.3 3618 4 ABL03916 34 29.2 15.2 836 4 AAK83773 35 29.2 15.2 836 4 AAK83773 36 29.2 15.2 1758 6 ABK87389 37 29.2 15.2 2190 8 ABZ79829	29.2 15.2 2253 8 ABZ79826 29.2 15.2 2274 8 ABZ79830 29.2 15.2 2214 8 ABZ79830 29.2 15.2 2313 8 ABZ79828 29.2 15.2 2337 8 ABZ79827 29.2 15.2 2406 12 ADO42025 29.2 15.2 2406 12 ADO42025 29.2 15.2 2406 12 ADO42025 29.2 15.2 2406 12 ADO42025	ALIGNMENTS	222	OS BIIIGODACCETIUM LONGUM. XX FH Key Location/Qualifiers FT CDS 193474 FT /*tag= a FT /product= "Cancer gene therapy protein" XX	PN JP2002097144-A. XX PD 02-APR-2002	XX XX PF 21-SEP-2001; 200JP-00290187. XX PR 21-SEP-2000; 2000JP-00287688. XX PA (AMAN/) AMANO A. PA (FUJI/) FUJIMORI M.	<pre>XX WFI; 2002-448201/48. DR P-PSDB; AAU96807. DR P-PSDB; AAU96807. FT Solid cancer therapy with anaerobic bacteria of Bifidobacterium sp. by PT tumor tissue specific delivery of a DNA encoding for an antitumor active PT protein or its precursor. FT Claim 10; Page 16; 21pp; Japanese. XX The invention describes a method of treating a solid cancer with CC anaerobic bacteria by site specific delivery of DNA encoding an CC antitumour active protein or its precursor. This sequence encodes a</pre>
GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.	OM nucleic - nucleic search, using sw model Run on: August 5, 2005, 21:17:03 ; Search time 306.841 Seconds (without alignments) 3704.166 Million cell updates/sec	Title: US-10-782-899-1_COPY_1_192 Perfect score: 192 Sequence: 1 gctgggggggggggggggggggggggggggggggggg	Searched: 4390206 seqs, 2959870667 residues Total number of hits satisfying chosen parameters: 8780412 Minimum DB seq length: 0 Maximum DB seq length: 200000000	Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	Database : N.Geneseq_16Dec04:* 1: geneseqn1990s:* 2: geneseqn2000s:* 4: geneseqn2001as:* 5: geneseqn2001bs:* 6: geneseqn2001bs:* 7: geneseqn2001bs:* 9: geneseqn2001bs:* 10: geneseqn2003bs:* 11: geneseqn2003ds:* 13: geneseqn2004bs:* 13: geneseqn2004bs:*	Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution. SUMMARIES	ery tch Lei	1 192 100.0 600 6 ABK52324 Abk52324 Abk52324 Abk52324 Abk52324 Abk52324 Abk52324 Abk52324 Abk5324 Abg81850 Abs727556 Abs277556 Abs277556 Abs227556 Abs2275	H 00 H 00

.

.

ខ	cancer gene therapy associated protein
v S	Sequence 600 BP; 132 A; 165 C; 161 G; 142 T; 0 U; 0 Other;
Que Bes Mat	Query Match 100.0%; Score 192; DB 6; Length 600; Best Local Similarity 100.0%; Pred. No. 3.1e-57; Matches 192; Conservative 0; Mismatches 0; Indels 0; Gaps 0;
су Ч	1 GCTGGGGGGGGGGGGGGCCATGAGCTTGACATGATCTTGTCTGATTCGTCTATTT 60
장 움 •	61 TCAATACCTTGGGGGAAATAGATGTGTGAAAACCCTTATAAAAGGGGGGTTTTGGCAGAAAC 120
YO da	121 ATGCGCTAGTATCATTGATGACAACATGGACTAAGCAAAAGTGCTTGTCCCCTGACCCAA 180
S S	181 GAAGGATGCTTT 192 181 GAAGGATGCTTT 192
RESU ABQ8 ID XX	RESULT 2 ABQB1850/c ID ABQ81850 standard; DNA; 156638 BP. XX
AX 8	281850; VOV 2002
X A	13-NOV-2002 (11150 Enuly) Bifidobacterium longum NCC2705 related nucleotide sequence SEQ ID:1106.
X M M M M	Bifidobacterium longum NCC2705; Bifidobacterium; bacterial; antidiarrheic; antibacterial; inhibitor of Salmonella; detection; identification; lactic acid bacterium; diarrhoea; pathogenic bacteria; rotavirus; food composition; pharmaceutical composition; gene; ds.
XSS	Bifidobacterium longum. Synthetic.
XX	BP1227152-A1.
S S S	31-JUL-2002.
P X 2	30-JAN-2001; 2001EP-00102050. 2073N-2001; 2001ED-00102050
XX) SOC PROD NESTLE SA.
XH	WPI; 2002-668397/72.
2222	Novel polynucleotide comprising Bifidobacterium genome sequence useful as a probe or primer for detecting and/or identifying Bifidobacterium longum in a biological sample.
XX SA XX	Disclosure; SEQ ID NO 1106; 80pp; English.
1 88	The present invention describes a polynucleotide (I) comprising a earners of a Bifidobacterium genome selected from the nucleotide
388	sequences given in AB081842 and AB081843, or a sequence exhibiting at least 90% identity or which hybridises with the sequences given in
ខ្លួនទ	ABQ01842 and ABQ01843. Also described is a polynucleotide (II) encoding a fusion protein, comprising a sequence selected from 1097 sequences given in AbbG5588 to AbbG6554 in frame to a molynucleotide encoding a
388	In APPOSISE U MERCOUNT ANY CONTRACT IN A MARK OF A MARKAUNT CONTRACT OF A MARKAUNT
888	a probe) is useful for the detection and/or identification of Bifidobacterium longum in a biological sample. A carrier containing the lactic acid bacterium Bifidobacterium longum NCC2705 (CNCM I-2618) can be

used for preventing and/or treating diarrhoea brought about by pathogenic bacteria and/or rotewirus. The carrier is a food composition selected from milk, yogurt, curd, cheese, fermented milks, milk based fermented products, ice-creams, fermented cereal based products, milk based products, ice-creams, fermented cereal based based based based or a supplement, wet oral supplement, dry tube feeding or wet tube feeding. (1) is useful in DNA arrays or chips to carry out analysis of the supplement, wet oral supplemented a ferther diffice bifidobacterium related nucleotide sequences given in the Sequence listing from the present invention but not mentioned further within the specification. N.B. The sequence data for this patent is not reprisented in the printed by the European Patent Office supplied by the European Patent Office Sequence 15638 BP; 32098 A; 46491 C; 46415 G; 31634 T; 0 U; 0 Other;	Query Match 91.2%; Score 175.2; DB 6; Length 156638; Best Local Similarity 97.4%; Pred: No. 3.1e-50; Matches 189; Conservative 0; Mismatches 3; Indels 2; Gaps 1;	1 GCTGGGGGGGGGGGGGCGTGAAGGCTTGACAAGGATAATCTTGTCTGATTGGTCTATTT 60 111111111111111111111111111111111111	61 TCAATACCTTCGCGGAAATAGATGTGAAAAACCCTTATAAAACGCGGGGTTTTCGCAGAA 118 1<		179 141984	RESULT 3 AAA64140/c ID AAA64140 standard; DNA; 50000 BP. XX AC AAA64140;	20-DEC-2000 Wiiclectide	Beta-tubulin antigen; i chronic ear disease; au	Homo sapiens. W0200050593-A1.		25-FEB-2000; 2000MO-US004795.	25-FEB-1999; 99US-0121549P.		WPI ;	New beta-tubulin antigen in the membranous structure of the inner ear, r reactive with antibodies of patients with Meniere's disease, for diagnosing Meniere's disease and distinguishing this disease from other r autoimmune ear diseases.	t 5 Claim 3: Page 74-97; 115pp; English.
88888888888888888888888888888888888888		S g	δ a	δ g	& g	ACTAR	ΕX		XSXM	XG	XH	XHX	a X 5	238	XTTTT	XX

C

CC cDNA sequences have been obtained, the full 5' UTR is rarely included. 5' CC ESTS are derived from mRNAS with intact 5' ends and can therefore be used CC ESTS are derived from mRNAS with intact 5' ends and can therefore be used CC to obtain full length cDNAs and genomic DNAs. 5' ESTS are also used in CC diagnostic, forensic, gene therapy and chromosome mapping procedures. CC They are used to obtain upstream regulatory sequences and to design CC expression and secretion vectors SX Sequence 278 BP; 82 A, 44 C; 43 G; 108 T; 0 U; 1 Other; CC expression and secretion vectors CC expressin and secretion vectors CC expression and secretion	Db 99 TCATGTGGATTGTTTTCTGTCTTTAGGTATTAAAATGCTGTATTCAATAATTTKGGGGAC 158 Qy 78 ATAGATGTGAAAACCCTTATAAAACGCGGGGTTTTCGCGGAAAACATGGGTAGTATCATTG 137 Qy 78 ATAGATGTGAAAACCCTTATAAAACGGGGGGTTTTCGCGGAAAACATGGGGTAGTATCATTG 137 Qy 18 ATAGATGTGAAAACCCTTATAAAACGGGGGGTTTTCGCGGAAAACATGGGGTAGTATCATTG 137 Dp 159 ATATATGTCATTATCACATATATACGAGTGTGTGTGTGGGGTGACATTCCAAAAGTGCACTG 218	QY 138 ATGACAACATGGACTAAGCAAAAGTGCTTGT 168 19 219 CTGAGTAGGGGTAATGTATTTGTATTTGTATTTTT 249	RESULT 5 ABL21958/c ID ABL21958 standard; DNA; 2717 BP.	ABL21958;	DT 26-MAK-2002 (LITSC ENCLY) XX DE Drosophila melanogaster genomic polynucleotide SEQ ID NO 17347.	XX XW Drosophila; developmental biology; cell signalling; insecticide; XW pharmaceutical; gene; ds.	XX OS Drosophila melanogaster.	XX FN WO200171042-A2. XX	27-SEP-2001.	23-MAR-2001; 23-MAR-2000;	 Venter JC,	WPI; 20	XX PT New isolated nucleic acid detection reagent for detecting 1000 or more PT genes from Drosophila and for elucidating cell signaling and cell-cell			cell-cell interactions in higher eu insecticides, therapeutics and pharn discloses genomic DNA sequences (ABI discloses denomic DNA sequences (ABI	CC sequences (Abuluator Abulator) and the should proceed process where of the CC ABB72072). The sequence data for this patent did not form part of the CC printed specification, but was obtained in electronic format directly CC from WIPO at ftp.wipo.int/pub/published_pct_sequences XX
XX The present sequence encodes a beta-tubulin antigen. The protein is an CC antigen of the membranous structure of the inner ear protein, and is CC antigen of the membranous structure of the inner ear protein, and is CC meniers's disease is a chronic ear disease with unknown etiology. Serum CC meniers's disease is a chronic ear disease contain autoantibodies against from patients suffering from this disease contain autoantibodies against cc a 30 kDa cochlear protein antigen. The disease is believed to be an autoimmune disease. The beta-tubulin antigen is useful as a target cubstance in diagnosing or detecting Meniere's disease and in distinguishing this disease from other autoimmune ear diseases Sequence 5000 BP; 17281 A; 9480 C; 8791 G; 14448 T; 0 U; 0 Other; Ouery Match	Conservative 0 TTGTCTGATTGATTGTCTATTTT 1111111111111111111111111111111	QY 102 CGCGGGGTTTTTCGCAGAAACATGCGCTAGTAATCATTGATGAACAAAGGGACTAAGCAAAAG 161 D 26316 CCTATTTTTCGGCATAAATGCTTGCCATGATTAAAATAGAAATCAGCATGAT 26257	OY 162 TGCTTGTCCCTGACCCAA 180 DD 26256 TTCTTACTGGTGGACCAA 26238	SULT 4 C27526	ID AAC27526 standard; CDNA; 278 BP. XX AC AAC27526;	06-OCT-2000 (first entry)	Human secreted protein 5' EST, SEQ ID NO: 31601.	KW Human; 5' EST; expressed sequence tag; secreted protein; CDNA isolation; KW gene therapy; chromosome mapping; ss.	os Homo sapiens. XX	PN BP1033401-A2. XX DN 66.989-2000	XX . PR 26-FEB-1999; 99US-0122487P. . XX	PA (GEST) GENSET. XX	<pre>PI Dumas Milne Edwards J, Duclert A, Giordano J; . XX DR WPI; 2000-500381/45.</pre>	New nucleic obtaining cl	diagnostic, totensic, gene cherapy and chromosome mapping from Claim 1; SEQ ID NO 31601; 71pp + Sequence Listing; English.	The present sequence is one of a large number of 5' ESTs of mRNAs encoding secreted proteins. No ORF has yet been con identified within the present sequence. The 5' ESTs were present sequence.	CC total human RNAs or polyA+ RNAs derived from 30 different tissues. EST CC sequences usually correspond mainly to the 3' untranslated region (UTR) CC of the mRNA because they are often obtained from oligo-dT primed CDNA CC libraries. Such ESTs are not well suited for isolating CDNA sequences CC derived from the 5' ends of mRNAs and even in those cases where longer

•

•

•

1...

Page 3

us-10-782-899-1_copy_1_192.rng

 Mon Aug 8 15:40:17 2005 ٦

S
2005
ο
N
7
H.
••
ο
4
••
S
ы
ω
-
Aug
3
4
-
Mon
2
2

WP Fragment Name Begin End WP AB067195_0 110000 110000 WP AB067195_1 100001 210000 WP AB067195_2 200001 310000 WP AB067195_3 300001 410000 WP AB067195_4 400001 410000 WP AB067195_3 300001 410000 WP AB067195_4 400001 415000 WP AB067195_4 16.7%; Score 32; DB 6; Length 110000; Best Local Similarity 50.7%; Pred: No. 13; 75; Indels 0; Matches 77; Conservative 0; Mismatches 75; Indels 0; QY 35 CATAATCTTGATTACTTCATATACTTCGGGAAATAGATGCTGAAAAACCT 91 Db 29177 CATGAAACTCGGACACGCCATCCATTCATTCATTATTCGGGAAAGGCCATTTGAAAAACCT 29118	0y 95 THYARAACGGGGGTTTTTCGCGGGAACTTGATTGATTGATGGAACTTGATGATTGAT
<pre>SQ Sequence 2717 BP; 835 A; 555 C; 503 G; 824 T; 0 U; 0 Other; Query Match 16.9%; Score 32.4; DB 4; Length 2717; Best Local Similarity 56.6%; Pred: No. 1.8; Matches 60; Conservative 0; Mismatches 46; Indels 0; Gaps 0; OY 39 ATCTTGTCTGTTTTCATATACTTCGGGGGAAATAGATGGTGAAAACCCTTATA 98</pre>	<pre>RESULT 6 ABG7217 5 ABG7217 5 ABG7217 5 ABG7214 5 AB</pre>

r

2005
15:40:17
ø
Aug
Mon

us-10-782-899-1_copy_1_192.rng

 PR 08-NOV-2000; 2000US-0246610P. PR 08-NOV-2000; 2000US-0246611P. PR 17-NOV-2000; 2000US-0246613P. PR 17-NOV-2000; 2000US-0242208P. PR 17-NOV-2000; 2000US-0249208P. PR 17-NOV-2000; 2000US-0249210P. PR 17-NOV-2000; 2000US-0249211P. PR 17-NOV-2000; 2000US-0249214P. 	17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 17-NOV-2000 01-DBC-2000 01-DBC-2000 05-DBC-2000 05-DBC-2000 05-DBC-2000 05-DBC-2000 06-DBC-2000 08-DBC-2000 09-DBC-2000 09-DBC-2000 09-DBC-2000 09-DBC-2000 01-DBC-2000 00-000 00-00000000000000000000		Aat Mat
14-NUG-2000; 2000US-0225758P. 18-NUG-2000; 2000US-0225759P. 18-NUG-2000; 2000US-02265159P. 22-NUG-2000; 2000US-0226681P. 22-NUG-2000; 2000US-0226868P. 22-NUG-2000; 2000US-0229688P. 30-NUG-2000; 2000US-0229287P. 01-SEP-2000; 2000US-0229344P. 01-SEP-2000; 2000US-0229344P. 01-SEP-2000; 2000US-0229344P. 01-SEP-2000; 2000US-0229344P. 01-SEP-2000; 2000US-0229545P. 01-SEP-2000; 2000US-0229545P. 01-SEP-2000; 2000US-0229545P. 01-SEP-2000; 2000US-0229545P. 01-SEP-2000; 2000US-0229545P. 01-SEP-2000; 2000US-0229545P. 05-SEP-2000; 2000US-0229545P. 05-SE	B - 55F - 2000; 200005 - 0231244P B - 55F - 2000; 200005 - 0231244P B - 55F - 2000; 200005 - 0231414P B - 55F - 2000; 200005 - 0232080P B - 55F - 2000; 200005 - 0232080P A - 55F - 2000; 200005 - 0232080P A - 55F - 2000; 200005 - 0232099P A - 55F - 2000; 200005 - 0232094P A - 55F - 2000; 200005 - 0232063P A - 55F - 2000; 200005 - 0232063P A - 55F - 2000; 200005 - 0233063P A - 55F - 2000; 200005 - 0233063P A - 55F - 2000; 200005 - 0233063P A - 55F - 2000; 200005 - 023400P A - 55F - 2000; 200005 - 023409P A - 55F - 2000; 200005 - 0234998P A - 55F - 2000; 200005 - 0234998P	BP-2000; 2000US-0235336P. EP-2000; 2000US-0236356P. EP-2000; 2000US-0236356P. EP-2000; 2000US-023656P. EP-2000; 2000US-023656P. EP-2000; 2000US-023656P. CT-2000; 2000US-023703P. CT-2000; 2000US-0237038P. CT-2000; 2000US-0237034P. CT-2000; 2000US-0233935F. CT-2000; 2000US-0233935F. CT-2000; 2000US-023935F. CT-2000; 2000US-024128P. CT-2000; 2000US-024178F. CT-2000; 2000US-024178F. CT-2000; 2000US-024178F. CT-2000; 2000US-024178F.	CT-2000) 200005-0244617P OY-2000) 200005-0244617P OY-2000) 200005-0246476P OY-2000) 200005-0246476P OY-2000) 200005-0246476P OY-2000) 200005-0246477P OY-2000) 200005-0246574P OY-2000) 200005-0246524P OY-2000) 200005-0246524P OY-2000) 200005-0246524P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P OY-2000) 200005-0246527P

.

.

<pre>1703 CACCCATGATGA 17 9 181/c AAL06181 standard; D AAL06181 standard; D 17-JJN 2000; 2000US- 11-JJU-2000; 2000US- 11-AUG-2000; 2000US- 2000S- 2000S- 2000S- 2000S</pre>
--

000US - 0231243P 000US - 0231244P 000US - 0231413P 000US - 0231414F 000US - 0232080P 000US - 0232080P 000US - 023230397P 000US - 02323938P 000US - 0232398P 000US - 0232398P 000US - 0232398P 000US - 0232400P	2000US -0233064P 2000US -0233064P 2000US -0233064P 2000US -0234997P 2000US -0234997P 2000US -0234997P 2000US -0234994P 2000US -0234994P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -0235364P 2000US -023537037P 2000US -02363799 2000US -02363799 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02341785P 2000US -02346475P 2000US -0246524P 2000US -0246524P 2000US -0246524P 2000US -0246524P 2000US -0246524P 2000US -0246513P 2000US -0246514P 2000US -0246514P 2	000005-0249211F 000005-0249212F 000005-0249213F 000005-0249215F 000005-0249216F 000005-0249216F 00005-0249218F 00005-0249218F 00005-0249218F 00005-0249218F 00005-0249244F
8 08-5EP-2000; 8 08-5EP-2000; 8 08-5EP-2000; 8 08-5EP-2000; 8 08-5EP-2000; 8 08-5EP-2000; 8 12-5EP-2000; 8 14-5EP-2000; 8 14-5	PR 14-587 PR 21-587 PR 21-587 PR 21-587 PR 21-587 PR 21-587 PR 21-587 PR 25-587 PR 25-587 PR 25-587 PR 25-587 PR 25-587 PR 27-587 PR 29-587 PR 22-567 PR 22-567 PR 22-667 PR	R 17-NOV-2000 R

r

1

٦

2000US-0179065P 2000US-0186628P 2000US-0188656P 2000US-0188656P 2000US-0189874P 2000US-0198123P 2000US-0198123P 2000US-0215135P 2000US-0215135P 2000US-0215135P 2000US-02151486P 2000US-0215135P 2000US-0217487P 2000US-0217487P 2000US-0217487P 2000US-0217487P 2000US-0217487P 2000US-0217487P 2000US-022567P 2000US-0225567P 2000US-0225567P 2000US-0225567P 2000US-0225567P 2000US-0225567P 2000US-02255758P 2000US-02255758P 2000US-02255758P

	PR 19-MAY-2000 PR 07-UUN-2000 PR 28-UUN-2000 PR 07-UUL-2000 PR 07-UUL-2000	1400 100 100	нннн		PR 14-AUG-2000 PR 14-AUG-2000 PD 14 ATC-2000		4 M C		29		PR 08-5EP-2000 PR 08-5EP-2000 PR 08-5EP-2000 PR 12-5EP-2000 PR 14-5EP-2000		PR 14-SEP-2000; PR 14-SEP-2000; PR 14-SEP-2000:			PR 26-SEP-2000 PR 27-SEP-2000 PR 27-SEP-2000		
17-NOV-2000; 2000US-0242655 17-NOV-2000; 2000US-02492695 17-NOV-2000; 2000US-02492995 17-NOV-2000; 2000US-02493095 01-DEC-2000; 2000US-0250160P 01-DEC-2000; 2000US-0250391P.		06-DEC-2000; 2000US-0251990P. 08-DEC-2000; 2000US-0251990P. 11-DEC-2000; 2000US-0254097P. 05-JAN-2001; 2001US-0259678P.	(HUMA-) HUMAN GENOME SCI INC. Rogen CA, Barash SC, Ruben SM;	WPI; 2001-465570/50. Isolated nucleic acid molecule encoding a reproductive system antigen is used in preventing, tracting or ameliorating a medical condition.	Disclosure; SEQ ID NO 8869; 1297pp + Sequence Listing; English.	The present invention provides the protein and coding sequences of a number of human reproductive system related antigens. These can be used in the prevention and treatment of reproductive system disorders, including cancer. The present sequence is a genomic sequence encoding a protein of the invention	Sequence 18272 BP; 3601 A; 5274 C; 5400 G; 3997 T; 0 U; 0 Other;	Query Match 16.2%; Score 31.2; DB 4; Length 18272; Best Local Similarity 60.7%; Pred. No. 11; Matches 51; Conservative 0; Mismatches 33; Indels 0; Gaps	71 CGGGGGAAATAGATGTGAAAAACCCTTATAAAACGCGGGGTTTTCGCAGAAACATGCGCTAGT 130 1708 1	131 ATCATTGATGACAACAAGGACTAA 154	3ULT 10 198746/c ABL98746	ABL98746;	21-JUN-2002 (first entry)	Human testicular antigen encoding DNA fragment SEQ ID NO: 3398.	XX KW Human; testicular antigen; testes; cancer; metastasis; immune disorder; KW reproductive system disorder; urinary system disorder; gene therapy; KW cardiovascular disorder; respiratory disorder; neurological disorder; KW gastrointestinal disease; infection; cytostatic; gene; ds.		WO200155317-A2.	

2000US-0226681P. 2000US-0226868P. 2000US-0227182P.

2000US-0227009F 2000US-0228924F 2000US-0228924F 2000US-0229343F 2000US-0229343F 2000US-0229345F 2000US-0229345F 2000US-0229345F

200005-0230437P 200005-0230437P 200005-0230434P 200005-0231444P 200005-0231444P 200005-0231444P 200005-0231444P 200005-0231414P 200005-0232399P 200005-0232399P 200005-0232399P 200005-0232399P 200005-0232399P 200005-023249P 200005-023494P 200005-023495P 200005-023656P 200005-023656P 200005-0236556P 200005-0236556P

ഹ
0
00
N
2
H.
·
ö
4
A.
••
S
÷.
œ
h
Aug
2
F4
_
Mon
0
~

.

•

us-10-782-899-1_copy_1_192.rng

DCT2001 20008-03216805 CCT-2001 20008-032	<pre>bisclosure; SEQ ID NO 3398; 766pp; English. The present invention provides the protein and coding sequences of 973 the present invention provides the protein and coding sequences of 973 thuman testicular antigens, and fragments of their genomic sequences. The sequences can be used in the treatment of cardiovascular, urinary system, reproductive system, immune, respiratory, neurological and astrointestinal disorders, infections, and particularly cancer, especially testicular cancers. The present sequence is a DNA encoding a protein fragment of the invention Sequence 18272 BP; 3601 A; 5274 C; 5400 G; 3997 T; 0 U; 0 Other; Query Match 16.2%; Score 31.2; DB 4; Length 18272; Best Local Similarity 60.7%; Pred. No. 11; Matches 51; Conservative 0; Mismatches 33; Indels 0; Gaps 0; Matches 51; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 24 C; Sub 4; Length 18272; Best Local Similarity 60.7%; Pred. No. 11; Matches 51; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 24 C; Sub 4; Length 18272; Discutation and antiches 24; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 24; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 24; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 24; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 15; Conservative 0; Mismatches 33; Indels 0; Gaps 0; discutation and antiches 16; Conservative 0; Mismatches 24; Conservative 0; M</pre>	71 CGC 17088 CGA 131 ATC 17028 AAC 17028 AAC 17028 AAC 17028 AAC 17028 AAC 17028 AAC 17028 AAC 17028 AAC ACN50973 5ta ACN50973 5ta ACN50073 5ta ACN50073 5ta ACN50073 5ta ACN50073 5ta ACN50073 5ta	Cotton androeclum tissue EST Cione 10: LIBJA28-002-01-ND-F9, Cotton; plant; EST; expressed sequence tag; transgenic plant; genetic mapping; molecular tag; molecular genetic mapping; seed germination; plant g Gossypium hirsutum. US2004123340-A1. 24-JUN-2004. 12-DEC-2001; 2001US-00021323. 12-DEC-2001; 2001US-00021323. 12-DEC-2001; 2001US-00021323. 14-DEC-2000; 2000US-0255619F. (ETNC/) DEIXMAN J. (BEIK/) DEIXMAN J. (DEIK/) DEIXMAN J. (DEIK/) DEIXMAN J. (ETNC/) TIBGLER T. Deikman J, Feng PCC, Fincher KL, Ziegler TE; WPI; 2004-479808/45. Deikman J, Feng PCC, Fincher KL, Ziegler TE; WPI; 2004-479808/45. NPI; 2004-479808/45. The invention relates to 17880 cotton expressed sequence tag genes associated with plant growth, quality or yield, and as tages to map genes. Claim 1; SEQ ID NO 5754; 34pp; English. Claim 1; SEQ ID NO 5754; 34pp; English.
2000US-0236802P. 2000US-0237038P. 2000US-0237038P. 2000US-0237038P. 2000US-0237038P. 2000US-0237038P. 2000US-0241787P. 2000US-0241787P. 2000US-0241826P. 2000US-0241826P. 2000US-0241826P. 2000US-0244677P. 2000US-0244677P. 2000US-0244677P. 2000US-0244677P. 2000US-0244677P. 2000US-0244677P. 2000US-0244677P. 2000US-0246528P. 2000US-0246528P. 2000US-0246528P. 2000US-0246528P. 2000US-0246528P. 2000US-0249218P. 2000US-02492	Sox cc		usefu EX 87 87 87 87 87 87 87 87 87 87 87 87 87
			esticular treating

•

Å,

GLAZEBROOK J.

C invention, and to transforme aboved by must of an under a construct comprising a nucleic acid of the invention. The cotton BSTs are useful as molecular tags to isolate genetic regions, to isolate genes, to map conserve to determine gene family. The nucleic acid construct genes, to determine gene family. The nucleic acid molecules may be used for isolating a variety of agronomically significant genes associated with plant growth, quality yield, and could also serve as links in metabolic and catabolic pathways. The nucleic acid molecules may be associated germination. The ESTs additionally enable the acquisition of genes and catabolic pathways. The nucleic acid molecules are associated germination. The ESTs additionally enable the acquisition of promoters and cis-regulatory elements which will be useful to express and also permits the acquisition of molecular markers useful in breeding schemes, genetic and molecular mapping, and in cloning of agronomically schemes, genetic and molecular mapping, and in cloning of agronomically schemes, genetic and molecular mapping, and in cloning of agronomically schemes, genetic and molecular mapping, and in cloning of agronomically schemes, genetic and molecular mapping, and in cloning of agronomically content sequence or quantity of a protein by tissue printing. The present sequence represents a specifically claimed EST isolated from a cotton variety Nucotton33B androecium tissue cortin the printed sequence data for this patent did not form part of the printed sequence data for this patent did not form part of the printed sequence data for this patent did not form part of the printed sequence data for this patent did not form part of the printed secuence of the presente of the of a protein by tissue printed by the sequence data for this patent did not form part of the printed by the secuence of the presente of the printed by the printed by the secuence of the printed in electronic format printed by the printed by the secuence data for this patent of the printed by the print ö soybeán, alfalfa, sunflower, canola, cótton; peánut; tobacco; sugar beet; maize; barley; sorghum; rice; wheat; crop plant; insecticide reesistance; stress tolerance; salt tolerance; cold tolerance; drought tolerance; plant nutrition; apical dominance; dwarfism; early flowering; antiviral; 76 AAATAGATGTGTGAAAACCCCTTATAAAACGCGGGGTTTTTCGCAGAAACATGCGCTAGTATCAT 135 Gaps specification, but was obtained in electronic format directly from th patent office at seqdata.uspto.gov/sequence.html?DocID=US20040123340 proteins or their fragments encoded by nucleic acid molecules of the ss; transcription; plant genome augmentation; cereal; ;0 Length 466; Sequence 466 BP; 138 A; 105 C; 81 G; 142 T; 0 U; 0 Other; 39; Indels Score 30.6; DB 13; Pred. No. 3.6; 0; Mismatches 39; 136 TGATGACAACATGGACTAAGCAAAAGTGCTTGT 168 87 TGATCATACCCGGGAGGAACCAAGAGCCCTTGT 119 ADJ44041 standard; cDNA; 549 BP 26-SEP-2002; 2002US-00260238. 26-SEP-2001; 2001US-0325277P. 26-SEP-2001; 2001US-0325448P. 04-APR-2002; 2002US-0370620P. 15.9%; 58.1%; Query Match Best Local Similarity 58.1., Best Local Similarity 58.1., Strange (first entry) MOUGHAMER T BUDWORTH P. BRIGGS S P. COOPER B. Plant cDNA #5041. US2004016025-A1. gene; 06-MAY-2004 22-JAN-2004 antifungal Eukaryota. ADJ44041; (MOUG/) 1 (BRIG/) 1 (COOP/) BUDW/) Plant; U RESULT 12 ADJ44041, \$ <u>д</u> đ 8 g

The interious relates to plant nucleot be sequences for an unconsective sect, leaf- and/or stem-, panicle-, root or pollen-specific or -preferential cor constitutive transcription of an operatively linked nucleic acid segment. The invention also relates to a method for augmenting a plant genome and a method of identifying a gene, where its expression is caltered in the seed, leaf, team, panicle, pollen, root or is constitutive in a plant cell. The plant is a careal, e.g. soybean, alfalfa, sunflower, canola, cotton, peanut, tobacco or sugar beet, preferably maize, barley, sorghum, rice or wheat. The polynucleotides and the polypeptides they encode are useful for manipulating crop plants to alter or improve phenotypic characteristics, to produce large quantifies of oil or proteins, to incur resistance to insecticides, viruses of ting' and to incur stress tolerance (e.g. salt, cold or drought) to ensure the plants early flowering or altered metabolic pathways. This sequence represents a plant nucleic acid of the printed specification but was obtained in ö 107 176 New rice promoter, useful for manipulating crop plants to alter or improve phenotypic characteristics, e.g. produce large quantities of oil or proteins, resistance to insecticides, virus or fungi, stress tolerance or high nutritional value. 108 TTTTCGCAGAAACATGCGCTAGTATCATTGATGACAACATGGACTAAGCAAAAGTGCTTG 167 175 Argaccarcadaradeceaceacadarrecrridericadaarrecaccircaarareccrride 116 electronic format directly from USPTO at segdata.uspto.gov/sequence.html. 48 GATTCGTCTATTTCAATACCTTCGGGGAAATAGATGTGAAAAACCCTTATAAAACGCGGG 235 GAATCATTTGAGTTCAAGACTGCTGAAGAAAAGTTATCGAAGGTCTTGACCAAGCAGTG invention relates to plant nucleotide sequences that direct seed-Gaps с С ö Glazebrook DB 12; Length 549; Sequence 549 BP; 136 A; 143 C; 88 G; 177 T; 0 U; 5 Other; 64; Indels), Moughamer T, Briggs SP, Cooper B, Glaz Katagiri F, Kreps J, Provart N, Ricke D, 3.9; 0; Mismatches Example 13; SEQ ID NO 5041; 230pp; English Score 30.6; Pred. No. 3. ch 15.9%; 1 Similarity 51.9%; 69; Conservative (168 TCCCCTGACCCAA 180 TCCACTGAATCAA 103 WPI; 2004-190374/18. GOFF S A. KATAGIRI F. Query Match Best Local Similarity KREPS J. PROVART N. RICKE D. ZHU T. Budworth P, 115 Goff SA, (KREP/) (PROV/) (RICK/) (ZHUT/) (GOFF/) (KATA/) Matches The 6 a 8 g 8 g

RESULT 13 ABV51855

۰.

BP. ABV51855 standard; cDNA; 583 £

ABV51855;

17-SEP-2002 (first entry)

Human prostate expression marker cDNA 51846.

Human; prostate cancer; cytostatic; carcinogen; pharmacodyanamic marker; pharmacogenomic marker; gene; ss.

Homo sapiens

۰ ،

<pre>17-MAY-2001. 09-NOV-2000; 2000WO-US030782. 09-NOV-1999; 99US-0164258P. (GLAX) GLAXO GROUP LTD. Kimmerly WJ; WPI; 2001-316495/33. WPI; 2001-316495/33. WPI; 2001-316495/33. WPI; 2001-316495/33. WPI; 2001-316495/33. Nucleic acids encoding polypeptides from Staphylococcus epidermidis, useful for vaccinating against infections, e.g. endocarditis. Claim 8; Page 195; 2188pp; English. AMH52304 to AMH53970 represent nucleic acids (1) encoding polypeptides</pre>	<pre>(II), given in AABSJV0 represent mouter, a ductury propresent and (II) can have antibacterial activity and therefore can be used in vaccination. The mucleic acids (I) way be used to produce the S. epidermidis polypeptides (II) via the production of vectors containing them which are used to produce hosts cells which express the polypeptides. The polypeptides (II) (add/or nucleic acids) may then be used to vaccinate subjects and to raise antibodies against the bacteri The polypeptides may also be used to assay for other inhibitors of the activity and therefore identify compounds that may be used for the treatment of S. epidermidis infections, e.g. endocarditis. AMBS3971 to AMHS5090 represent specifically claimed S. epidermidis genomic DNA polymorleotide sequences from the present invention. AMHS5091 to AMHS represent oligonucleotide sequences and primers which are used in the sequence listing of the present invention. N.B. The present invention sequence listing of the present invention. N.B. The present invention in the disclosure for SEQ ID NO:4455 to 4472, no sequences are gi in the disclosure for SEQ ID NO:4455 to 4472, no sequences are given for SEQ ID NO:4455 to 4464 Sequence 1569 BP; 616 A; 186 C; 274 G; 493 T; 0 U; 0 Other; Best Local Similarity 57.3%; Pred, NO: 7.2; Best Local Similarity 57.3%; Pred, NO: 7.2;</pre>	QY 49 ATTCGTCTATTTCAATACCTTCGGGGAAATAGATGGTGGAAACGCGGGGT 108 Db 87 ATATGAAATAGAACAAAATAATGGGGGATCGATATCTCTCACTGCTTATAAAACGAGGGGT 146 Db 87 ATATGAAATATGAACAAAATAATGGGCGATCCATATCTCTCACTGCTTATAAAACTAATGT 146 0y 109 TTTCGCAGAAAAATGGGCTAGTTGATGGACAA 144 0y 147 TAACGCGGATAGTTGATGATGAAA 182 0b 147 TAACGCGGATATTTGATGGTTGATGAAAA 182	RESULT 15 AAH54121 ID AAH54121 standard; DNA; 3204 BP. XX AC AAH54121; XX DT 03-SEP-2001 (first entry) XX S epidermidis genomic polynucleotide sequence SEQ ID NO:3485. XX Staphylococcus epidermidis SR1 strain; infection; diagnosis; vaccination; XX endocarditis; ds. XX Staphylococcus epidermidis. XX W0200134809-A2. XX
--	---	---	---

े. दुर

09-NOV-2000; 2000WO-US030782.

99US-0164258P. 6661-VON-60

(GLAX) GLAXO GROUP LTD

Kimmerly WJ;

WPI; 2001-316495/33.

Nucleic acids encoding polypeptides from Staphylococcus epidermidis, useful for vaccinating against infections, e.g. endocarditis.

Claim 8; Page 1055-1056; 2188pp; English

AM152304 to AM153970 represent nucleic acids (I) encoding polypeptides (II), given in AAG81454 to AAG83120, from Staphylococcus epidermidis. (I) and (II) can have antibacterial activity and therefore can be used in vaccination. The nucleic acids (I) may be used to produce the S. c epidermidis polypeptides (II) via the production of vectors containing them which are used to produce hosts cells which express the polypeptides. The polypeptides (II) via the production of vectors containing the polypeptides and to raise antibodies against the bacteria. The polypeptides may also be used to assay for other inhibitors of their treatment of S. epidermidis infections, e.g. endocarditis. AM15371 to AM155090 represent lentify compounds that may be used for the treatment of S. epidermidis infections, e.g. epidermidis genomic DNA coplyncleotide sequences from the present invention. AM155091 to AM155093 represent oligonucleotide sequences and primers which are used in the exemplification of the present invention. AM15091 to AM155093 represent oligonucleotide sequences and primers which are used in the sequence listing of the present invention. AM15091 to AM155093 represent oligonucleotide sequences and primers which are used in the exemplification of the present invention. N.B. The present invention specifically claims all the polynucleotide sequences given in the listing only goes up to SEQ ID N0:4465 to 4472, no sequences are present in the disclosure for SEQ ID N0:4465 to 4472, no sequences are present

ŝ

Sequence 3204 BP; 1249 A; 411 C; 554 G; 990 T; 0 U; 0 Other;

ö 49 ATTCGTCTATTTTCAATACCTTCGGGGAAATAGATGTGTGAAAACCCCTTATAAAACGCGGGGT 108 542 ATATGAATATGAACAAAATAATGAGGGATCCATATCTCTCACTGTTATAAAACTAATGT 601 0; Gaps Query Match15.8%;Score 30.4;DB 4;Length 3204;Best Local Similarity57.3%;Pred. No. 9.8;Matches55;Conservative0;Mismatches41;Indels0;Mismatches41;Indels0; đ 6

109 TTTCGCAGAAACATGCGCTAGTATCATTGATGACAA 144 δ

602 TAACGCGGATATATTTGATAGTTTGATAATGAAAA 637 ዳ

Search completed: August 5, 2005, 23:52:40 Job time : 310.841 secs

....

POLEON MAN OF STATES HAT

•

•

,

1

2005
15:40:18
Aug 8 1
Mon 4

GenCore version 5.1.6 Copyright (c) 1993 - 2005 Compugen Ltd.	cleic - nucleic search, using sw model	m: August 5, 2005, 23:44:09 / Search time 420.486 Seconds (without alignments) 2959.924 Million cell updates/sec	:: US-10-782-899-1_COPY_1_192 :ct score: 192 :nce: 1 gctggggcggggggggggggggggggggggggggggg	ng table: IDENTITY NUC Gapop 10.0 , Gapext 1.0	:hed: 7297361 segs, 3241162794 residues	number of hits satisfying chosen parameters: 14594722	uum DB seq length: 0 uum DB seq length: 200000000	-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries	<pre>e : Published Applications NA:*</pre>	1 192 100.0 600 9 US-09-816-391A-1 Sequence 1, Appli 2 192 100.0 600 21 US-10-792-899-1 Sequence 1, Appli 3 175.2 91.2 2256646 19 US-10-470-565-1 Sequence 1, Appli 4 34.5 91.2 2256646 19 US-10-470-565-1 Sequence 1, Appli 4 34.6 19 22.0 US-10-470-565-1 Sequence 1, Appli 5 33.2 17.3 824 13 US-10-627-632-167810 Sequence 60228, A 5 33.2 17.3 824 13 US-10-027-632-167810 Sequence 167810, C 7 32.4 16.9 484 13 US-10-027-632-167810 Sequence 5678, A
	OM nuclei	Run on:	ů t	Scoring	Searched	Total nu	Minimum Maximum	Post-pro	Database Pr Result 	10000 10000000000000000000000000000000

 17 US-10-398-221-8 29 17 US-10-398-221-8 20 US-10-425-115-71957 20 US-10-425-115-71957 20 US-09-764-991 20 US-09-764-991 20 US-09-764-991 20 US-09-7632-10536 20 US-10-027-632-10536 20 US-10-047-132-1505 20 US-10-027-632-10536 20 US-10-042-1446 20 US-10-042-1436 20 US-10-042-116206 20 US-10-042-131-120 20 US-10-042-131-105 20 US-10-042-131-105 20 US-10-042-131-105 20 US-10-042-131-105 20 US-10-042-131-105 20 US-10-425-131-105 20 US-10-425-131-105	œ	32.4	16.	4	17	-10-027-632-	equence 65
10 32 16.7 3011208 17 US-10-395-31-3058 Sequence 2058, 113 3112 16.2 350 1932 10 US-10-474-12097 Sequence 21957, 115 30.6 15.9 1099 11 US-10-267-231-10556 Sequence 2051, 117 30.6 15.9 1099 17 US-10-277-632-10556 Sequence 2051, 118 30.4 15.9 1099 17 US-10-277-632-10556 Sequence 2051, 118 30.4 15.9 1099 17 US-10-277-632-10556 Sequence 2050, 119 30.1 15.6 201 20 US-10-375-31-10556 Sequence 2050, 15.6 201 20 US-10-375-31-10556 Sequence 2050, 15.6 201 20 US-10-375-31-105956 Sequence 2050, 15.6 201 20 US-10-376-32-105956 Sequence 2004, 201 20 US-10-376-32-20044 Sequence 2004, 201 20 US-10-376-32-20044 Sequence 2004, 201 20 US-10-376-32-20044 Sequence 2004, 201 20 US-10-376-32-20049 Sequence 2004, 201 20 US-10-376-32-20049 Sequence 2004, 201 20 US-10-276-23-20687 Sequence 2004, 201 20 US-10-276-23-20044 Sequence 2004, 201 20 US-10-276-23-20044 Sequence 2004, 201 20 US-10-276-32-20049 Sequence 2004, 201 200, 201 15.6 2010 10.027-632-20100, 201 15.6 2010 10.027-632-20100, 201 201 201 201 201 201 201 201 201 201		32	16.	4	17	10-398-221-8	8, Apr
<pre>11 31.6 16.5 722 20 US-10-422-115-71957 Sequence 12057 12 31.2 16.2 13.6 19 US-10-674-124.12097 Sequence 10556 14 30.6 15.9 466 19 US-10-27-632-10536 Sequence 10556 15 30.6 15.9 1099 11 US-10-027-632-10536 Sequence 10556 18 30.4 15.8 1099 11 US-10-027-632-10536 Sequence 10556 19 30.4 15.8 1099 11 US-10-027-632-10505 Sequence 10556 20 15.6 639 13 US-10-027-632-11506 Sequence 118565 21 30 15.6 639 13 US-10-077-532-11506 Sequence 118565 23 30 15.6 639 13 US-10-027-632-11506 Sequence 2509, 24 30 15.6 1017 17 US-10-074-024-435 25 30 15.6 2301 13 US-10-077-132-20844 Sequence 11857, 26 30 15.6 2301 13 US-10-077-132-20844 Sequence 200, 27 30 15.6 1017 17 US-10-027-632-11506 26 15.4 453 13 US-10-027-632-20844 Sequence 200, 26 2319 13 US-10-027-632-20847 Sequence 200, 27 30 15.6 15.4 453 13 US-10-027-632-20849 28 15.5 10303 17 US-10-27-632-20849 29 615 4 453 13 US-10-027-632-20849 29 614 17 US-10-27-632-20849 29 614 17 US-10-27-632-21811 Sequence 251811 40 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 41 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 42 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 43 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 44 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 44 29 4 15.3 614 17 US-10-027-632-21811 Sequence 22181 45 29 4 15.3 614 17 US-10-027-632-21812 Sequence 22181 46 29 4 15.3 614 17 US-10-027-632-21812 Sequence 22181 47 29 4 15.3 614 17 US-10-027-632-21812 Sequence 22181 48 29 4 15.3 617 1959 6164 17 US-10-027-632-21812 Sequence 22181 48 29 4 15.3 607 13 US-10-027-632-21812 Sequence 22181 48 29 4 15.3 507 9 US-09-169-99-199-169-99 48 29 4 15.3 607 9 US-09-769-99-199-99 48 29 4 15.3 507 9 US-09-769-29-21812 Sequence 22181 48 29 4 15.3 507 9 US-09</pre>		32	16.	301120	17	-10-398-221-205	e 2058,
12 31.2 16.2 360 19 US-10-674.12097 Sequence 3163 13 31.2 16.2 18.0 108-09-753 Sequence 3163 14 30.6 15.9 549 11 US-10-670-233-554 Sequence 5034 15 30.6 15.9 1099 11 US-100-7632-10536 Sequence 5106 17 30.6 15.9 1099 11 US-100-7632-10536 Sequence 5106 18 30.2 15.7 510 US-100-576-321-10536 Sequence 10536 20 30.2 15.7 501 105-91-510 Sequence 10506 21 30.2 15.7 501 105-10-207-532-10595 Sequence 4367 21 30.2 15.6 133 US-100-077-632-10596 Sequence 4307 22 30 15.6 133 US-100-077-632-10596 Sequence 4307 23 15.6 133 US-100-077-632-10696 Sequence 4307 201 23 15.6 133 US-100-077-632-21816 Sequence 4307 201 24 15.1 US-100		, .	16.	732	20	-10-425-115-7195	equence 71957,
1 11:2 16:2 1877 10 US-10-261-232-574 Sequence 5741 1 30:6 15:9 466 19 US-10-261-232-574 Sequence 10556 1 30:6 15:9 109 17 US-10-261-232-574 Sequence 10556 1 30.6 15:9 1099 17 US-10-027-632-10356 Sequence 10536 1 30.6 15:6 0199 17 US-10-027-632-10356 Sequence 10536 2 30.15.6 591 105-007-632-10536 Sequence 16306 Sequence 16306 2 30.15.6 501 17 US-10-027-632-10536 Sequence 18956 2 30.15.6 501 17 US-10-027-632-10506 Sequence 18906 2 30.15.6 501 17 US-10-027-632-10506 Sequence 18067 2 30 15.6 501 17 US-10-027-632-10506 Sequence 18067 2 30 15.6 501 17 US-10-027-632-18076 Sequence 18067 2 30 15.6 501 17 US-1007-632-18076 <t< td=""><td>. –</td><td></td><td>16</td><td></td><td>19</td><td>-10-674-124A-1209</td><td>12097,</td></t<>	. –		16		19	-10-674-124A-1209	12097,
14 30.6 15.9 466 19 US-10-027-532-5041 Sequence 10536, 17 30.6 15.9 1099 11 US-10-027-532-10356 Sequence 10536, 18 30.6 15.9 1099 11 US-10-027-532-10356 Sequence 10536, 19 30.6 15.9 1099 11 US-10-027-532-10356 Sequence 10506, 20 30.1 15.6 501 20 US-10-027-532-10856 Sequence 10506, 21 30 15.6 513 11 US-10-027-532-10856 Sequence 10506, 22 30 15.6 513 11 US-10-027-532-10856 Sequence 1050, 22 30 15.6 501 11 US-10-027-532-108956 Sequence 1050, 23 30 15.6 501 11 US-10-027-532-18956 Sequence 1050, 23 30 15.6 10317 US-10-027-532-18956 Sequence 1350, 24 30 15.6 10317 US-10-027-532-18956			16.		10	-09-764-891-8	8869,
<pre>15 30.6 15.9 539 17 US-10-226-239-5011 Sequence 10536 17 30.6 15.9 1099 17 US-10-027-632-10536 Sequence 10536 19 30.4 15.8 543 201 US-10-027-632-10536 Sequence 1506, 221 30.15.6 501 10 US-10-007-632-189956 Sequence 15056 23 30 15.6 501 10 US-10-007-632-189956 Sequence 15056 24 300 15.6 601 17 US-10-007-632-189956 Sequence 18056 25 300 15.6 601 17 US-10-007-632-189956 Sequence 18056 26 100 15.6 601 17 US-10-007-632-189956 Sequence 1805 26 100 15.6 601 10 US-10-007-632-189956 Sequence 1805 26 100 15.6 701 17 US-10-007-632-189956 Sequence 1805 27 30 15.6 701 17 US-10-007-632-2189956 Sequence 1805 28 30 15.6 701 17 US-10-007-632-270844 Sequence 2506 28 29.8 15.5 501 17 US-10-007-632-270844 Sequence 2506 29 29.8 15.5 10303 17 US-10-007-632-270844 Sequence 205, 29 15.5 10303 17 US-10-007-632-270844 Sequence 205, 20 15.6 15.4 453 17 US-10-007-632-270844 Sequence 205, 20 15.6 15.4 453 17 US-10-007-632-270844 Sequence 26687 20 15.6 15.4 453 17 US-10-007-632-270844 Sequence 26687 20 15.6 15.4 453 17 US-10-007-632-218112 Sequence 26687 20 15.1 15829 19 US-10-007-632-218112 Sequence 26687 20 15.1 15.3 115829 19 US-10-007-632-218112 Sequence 22181 29 4 15.3 15.3 10.9 10-007-632-218112 Sequence 22181 20 29.4 15.3 15.3 10.9 10-007-632-218112 Sequence 22181 20 29.4 15.3 15.3 10.9 10-007-632-218112 Sequence 22181 20 20 15.3 20.1 17 US-10-007-632-218112 Sequence 22181 20 20 15.3 20.1 17 US-10-007-632-218112 Sequence 22181 20 20 15.3 20.1 17 US-10-007-632-218112 Sequence 22181 20 20 15.3 20.1 17 US-10-007-632-21812 Sequence 22181 20 20 20-216-304.1 17 US-10-007-632-21812 Sequence 22181 20 20-216-314.1 17 US-10-007-632-21812 Sequence 22181 20 20 20-216-231.1 19.4 10-209-216-232-21812 Sequence 22181 20 20-216-214.1 10.0 10-091-7943-913-4619 Sequence 22181 20 20-216-214.1 10.0 10-091-7943-913-4619 Sequence 21.0 100-216-532-21812 Sequence 2000 20 20-016-016-210 2007 10</pre>	•		15.		61	-10-021-323-5	5754,
16 30.6 15.9 1009 13 US-10-057-632-10536 Sequence 10536, 17 30.6 15.7 3109 13 US-10-664-761-16206 Sequence 10536, 20 15.7 310.8 10.99 13 US-10-667-16216 Sequence 10536, 21 30.1 15.6 539 105-10-667-129-193-41046 Sequence 115956 22 30 15.6 539 13 US-10-067-132-1185956 Sequence 115957 23 15.6 1332 17 US-10-067-132-1185956 Sequence 11597 24 30 15.6 1332 17 US-10-077-632-1185956 Sequence 11597 25 30 15.6 1332 17 US-10-077-632-1185956 Sequence 1207 27 30 15.6 133 US-10-027-632-2185956 Sequence 1207 207 27 30 15.6 133 US-10-027-632-218596 Sequence 1207 207 28 10 US-10-027-632-218690 Sequence 1207 208 208 208 20104 2104 2104 2104 2104	•		5		17	-10-260-238-5	5041,
17 30.6 15.9 1009 17 30.6 583 20 357-393-51056 Sequence 51874 19 30.2 15.7 3104 15.8 583 20 357-393-51056 Sequence 51874 20 30.2 15.7 3104 15.8 530 15.5 530 15.5 530 15.5 530 15.6 539 13 US-10-027-632-185956 Sequence 185956 Sequence 1207 15 15 17 US-10-057-632-185956 Sequence 1207 15	• •-	50	2.5		11	-10-027-632-1053	10536,
18 30.4 15.6 563 20 57-930-51874 Sequence 510.6 20 15.6 531 30 15.6 531 30 15.6 531 30 15.6 531 30 15.6 533 13 US-10-057-552-185956 Sequence 185956 22 30 15.6 633 13 US-10-027-652-185956 Sequence 185956 23 15.6 533 13 US-10-027-632-185956 Sequence 185957 26 031 15.6 031 US-10-027-632-185956 Sequence 18597 26 031 15.6 031 US-10-027-632-185956 Sequence 1057 155 27 30 15.6 031 US-10-027-632-185966 Sequence 1057 156 103 17 US-10-027-632-270844 Sequence 1057 156 105 106 105	• -				11	-10-027-632-1053	10536,
19 3012 157 515 9 US-0097-1952-550 Sequence 250, 22 30 15.6 639 13 US-100-77-632-189566 Sequence 1859 23 30 15.6 639 13 US-10-719-993-4106 Sequence 1859 24 30 15.6 639 13 US-10-074-054-18556 Sequence 250, 25 30 15.6 639 13 US-10-074-054-136 Sequence 255 26 30 15.6 5011 13 US-10-074-054-136 Sequence 256 27 30 15.6 303172 20 US-10-074-054-136 Sequence 200, 27 30 15.6 303172 20 US-10-027-632-256897 Sequence 200, 29 15 10304 17 US-10-027-632-26897 Sequence 200, 30 29.6 15.4 453 10 US-10-027-632-268972 Sequence 240, 31 29.9 15.1 US-10-27-632-268172 Sequence 240, Sequence 24	•	50	15.		50	-10-357-930-5187	51874,
20 30:2 15.7 370465 13 US-10-087-192-250 Sequence 4104 21 30 15.6 539 17 US-10-027-632-185956 Sequence 1859 25 30 15.6 539 17 US-10-027-632-185956 Sequence 1859 25 30 15.6 539 17 US-10-037-132-185956 Sequence 1859 26 30 15.6 5311 US-10-037-132-189356 Sequence 1859 26 30 15.6 23117 20 US-10-037-132-1207 Sequence 2553 270 15.6 30117 20 US-10-027-632-270844 Sequence 2708 270 25.5 501 17 US-10-027-632-2710844 Sequence 250 270 25.5 10303 17 US-10-027-632-270844 Sequence 260 37 29.8 15.5 115229 19 US-10-027-632-256872 Sequence 240 38 29.4 15.5 115229 19 US-10-027-632-256872 Sequence 240 38 29.4 15.1 US-10-027-632-2218112 Sequence 240	, e		5.5		م	-09-864-761-16	equence 16206,
21 30 15.6 201 20 US-10-719-993-41046 Sequence 1859 22 30 15.6 539 13 US-10-027-632-185956 Sequence 1859 25 30 15.6 539 13 US-10-027-632-185956 Sequence 1859 26 30 15.6 1017 17 US-10-027-632-185956 Sequence 1859 26 30 15.6 303172 20 US-10-027-632-2185956 Sequence 1859 27 30 15.6 303172 20 US-10-037-032-4813 Sequence 105, 27 30 15.6 303172 20 US-10-027-632-270844 Sequence 206 28 15.5 10303 17 US-10-027-632-26872 Sequence 206 206 30 29.8 15.5 10303 17 US-10-027-632-268972 Sequence 206 206 31 29.8 15.4 453 13 US-10-027-632-2588972 Sequence 206 32 29.6 15.4 453 17 US-10-027-632-21812 Sequence 206 33 29.6 <t< td=""><td>20</td><td></td><td>15.</td><td>'n</td><td>Н</td><td>S-10-087-192-2</td><td>Sequence 250,</td></t<>	20		15.	'n	Н	S-10-087-192-2	Sequence 250,
22 30 15.6 639 13 US-10-027-632-185956 Sequence 1859 23 30 15.6 639 17 US-10-037-632-185956 Sequence 1859 25 30 15.6 639 17 US-10-037-632-185956 Sequence 1859 26 30 15.6 5317 US-10-037-632-185956 Sequence 2366 26 30 15.6 2519 13 US-10-027-632-185956 Sequence 2708 27 30 15.6 3017 20 13 US-10-027-632-270844 Sequence 2708 29 29.8 15.5 10303 17 US-10-227-632-270844 Sequence 2708 30 29.8 15.5 10303 17 US-10-227-632-270844 Sequence 2401 31 29.9 15.4 453 17 US-10-227-632-256872 Sequence 2461 32 29.6 15.4 453 17 US-10-227-632-256872 Sequence 2461 33 29.6 15.4 2510 18 US-10-227-632-256872 Sequence 2461 33 29.6 15.4	10	; m	15.		20	-10-719-993-4104	41046
23 30 15.6 639 17 US-10-027-632-185956 Sequence 2553 24 30 15.6 7017 US-10-074-024-436 Sequence 2553 27 30 15.6 303172 20 Sequence 2553 Sequence 2553 27 30 15.6 303172 20 Sequence 2553 Sequence 2563 29 15.5 501 17 US-10-074-024-436 Sequence 2708 29 15.5 10303 17 US-10-27-632-270844 Sequence 2500 20 29.8 15.5 10303 17 US-10-264-213-120 Sequence 105 31 29.8 15.5 10303 17 US-10-2667-632-26687 Sequence 266 32 29.6 15.4 453 13 US-10-27-632-266872 Sequence 266 33 29.6 15.4 453 13 US-10-27-632-266872 Sequence 266 34 29.6 15.4 453 13 US-10-27-632-266872 Sequence 266 35 29.6 15.4 2510 18 US-10-264-114-24639		30	15.		1	-10-027-632-18595	185956
24 30 15.6 1332 17 US-10-074-024-936 Sequence 436, 25 30 15.6 7017 17 US-10-074-024-936 Sequence 436, 28 30 15.6 501 13 US-10-074-024-936 Sequence 436, 28 20 15.6 501 13 US-10-077-032-270844 Sequence 120, 29 29 15.5 501 17 US-10-264-213-105 Sequence 120, 31 29.8 15.5 10303 17 US-10-264-213-105 Sequence 120, 31 29.8 15.5 10303 17 US-10-27632-270844 Sequence 120, 32 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2463 33 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2463 33 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2463 34 29.4 15.4 2510 18 US-10-027-632-266872 Sequence 2463 37 29.4 15.3 413	2	30	15.		17	-10-027-632-18595	185956,
25 30 15.6 7017 17 US-10-074-024-436 Sequence 1207 26 30 15.6 25519 13 US-10-719-991-6890 Sequence 1207 27 30 15.6 5511 13 US-10-719-991-6890 Sequence 2708 29 8 15.5 501 17 US-10-027-632-270844 Sequence 2708 30 29.8 15.5 10303 17 US-10-264-213-105 Sequence 2708 31 29.8 15.5 10303 17 US-10-264-213-105 Sequence 2708 32 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2690 33 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2463 33 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2463 34 17 US-10-027-632-266872 Sequence 2463 Sequence 2463 35 29.6 15.4 2510 18 US-10-227-632-21811 Sequence 2463 35 29.6 15.4 15 US-10-027-632	2	30	15.		17	-10-369-493-2553	25530
26 30 15.6 25519 13 US-10-719-991-6090 Sequence 6190 27 30 15.6 303172 20 Sequence 6190 Sequence 2708 29 29.8 15.5 501 17 US-10-027-632-270844 Sequence 2708 20 29.8 15.5 501 17 US-10-027-632-270844 Sequence 105, 31 29.8 15.5 10303 17 US-10-264-213-120 Sequence 105, 32 29.8 15.5 10303 17 US-10-264-213-120 Sequence 200, 33 29.6 15.4 453 13 US-10-267-632-266072 Sequence 2668 34 29.6 15.4 453 13 US-10-027-632-266072 Sequence 2668 35 29.6 15.4 453 13 US-10-027-632-266072 Sequence 2668 36 29.4 15.4 2526 20 US-10-027-632-266072 Sequence 2668 37 29.6 15.4 453 13 US-10-027-632-266072 Sequence 2668 37 29.6 15.4 <	25	30	15.		1	-10-074-024-4	436,
<pre>27 30 15.6 303172 20 US-10-7719-993-6690 Sequence 6890 28 29.8 15.5 501 13 US-10-027-632-270844 Sequence 2708 29 29.8 15.5 10303 17 US-10-264-213-105 Sequence 2708 31 29.8 15.5 10303 17 US-10-264-213-120 Sequence 205 32 29.6 15.4 453 13 US-10-027-632-266872 Sequence 5068 34 29.6 15.4 453 13 US-10-027-632-266872 Sequence 2668 35 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2668 35 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2668 36 15.4 2510 18 US-10-027-632-226872 Sequence 2668 37 29.6 15.4 2500 20 US-10-027-632-226872 Sequence 2668 38 29.4 15.3 614 13 US-10-027-632-221811 Sequence 2218 41 29.4 15.3 614 13 US-10-027-632-221811 Sequence 2218 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2316 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2316 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2318 42 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2316 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2316 41 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2316 41 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2316 42 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2316 43 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2316 44 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2316 45 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2316 45 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2415 45 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2415 46 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2415 46 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2415 46 29.4 15.3 867 17 US-10-369-493-3463 Sequence 2415 47 29.4 15.3 3612 17 US-10-369-493-3463 Sequence 249 48 29.4 15.3 867 17 US-10-369-49</pre>	26	30	15.	••	2	-10-087-192-1	1207,
28 29.8 15.5 501 13 US-10-027-632-270844 Sequence 2708 29 29.8 15.5 10303 17 US-10-027-632-270844 Sequence 2708 30 29.8 15.5 10303 17 US-10-264-213-105 Sequence 2708 31 29.8 15.5 10303 17 US-10-264-213-105 Sequence 250 32 29.6 15.4 453 17 US-10-027-632-266872 Sequence 266 33 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2463 35 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2463 35 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2463 36 29.6 15.4 2510 18 US-10-027-632-226873 Sequence 2463 36 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2718 39 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2314 39 29.4 15.3 <td>1</td> <td>30</td> <td>15.</td> <td>ň</td> <td>20</td> <td>-10-719-993-6</td> <td>6890,</td>	1	30	15.	ň	20	-10-719-993-6	6890,
<pre>29 29.8 15.5 501 17 US-10-027-632-270844 Sequence 105, 31 29.8 15.5 10303 17 US-10-264-213-120 32 29.8 15.5 115829 19 US-10-322-281-590 Sequence 2560, 33 29.6 15.4 453 13 US-10-027-632-266772 Sequence 2560 35 29.6 15.4 2510 18 US-10-027-632-266772 Sequence 2668 35 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2668 36 15.4 2510 18 US-10-027-632-266872 Sequence 2668 37 29.6 15.4 2510 18 US-10-027-632-266872 Sequence 2668 38 29.4 15.3 614 13 US-10-027-632-221811 Sequence 2218 40 29.4 15.3 614 13 US-10-027-632-221811 Sequence 2218 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 42 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 44 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 42 29.4 15.3 3612 17 US-10-027-632-221812 Sequence 2218 43 29.4 15.3 3612 17 US-10-369-493-346196 Sequence 2218 59000000 500000 50000 500000 50000 50000 500000 50000 50000 500000 50000 500000 5000000</pre>	2	<u>б</u>	15.		1	-10-027-632-27084	2708
30 29.8 IS.5 10303 17 US-10-264-213-105 Sequence 105, Sequence 105, Sequence 120, Sequence 506 31 29.8 IS.5 10304 17 US-10-327-661-223 Sequence 500, Sequence 506 33 29.6 IS.4 453 13 US-10-027-652-266872 Sequence 506 34 29.6 IS.4 453 13 US-10-027-652-266872 Sequence 506 35 29.6 IS.4 453 13 US-10-027-652-266872 Sequence 2668 35 29.6 IS.4 2510 B US-10-027-652-266872 Sequence 2668 36 15.4 2510 B US-10-027-652-226812 Sequence 2451 37 29.6 IS.4 2500 10-425-114-24639 Sequence 2451 37 29.4 IS.1 US-10-027-652-22181 Sequence 2451 38 29.4 IS.3 US-10-027-652-221811 Sequence 2218 39 29.4 IS.3 US-10-027-652-221811 Sequence 2218 40 29.4 IS.3 US-10-027-652-221812 Sequence 2218 41	0	5	15.		17	-10-027-632-27084	2708
31 29.8 15.5 10304 17 US-10-264-213-120 Sequence 120, 32 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2668 34 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2668 35 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2668 35 29.6 15.4 2510 18 US-10-425-114-24639 Sequence 2463 36 29.6 15.4 2510 18 US-10-425-114-24639 Sequence 2463 36 29.6 15.4 2500 13 US-10-425-114-24639 Sequence 2463 37 29.4 15.3 014 13 US-10-425-114-24639 Sequence 2463 37 29.4 15.3 614 13 US-10-027-632-21811 Sequence 2218 39 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 41 29.4 15.3 614 17 US-10-33-46196 Sequence 2314 42 29.4 15.3 <	1	5	15.		17	-10-264-213-1	105,
32 29.8 IS.5 II5829 19 US-10-322-281-590 Sequence 2668 33 29.6 IS.4 453 13 US-10-027-632-266872 Sequence 2668 35 29.6 IS.4 453 17 US-10-027-632-266872 Sequence 2668 35 29.6 IS.4 2510 18 US-10-425-114-24639 Sequence 2463 37 29.6 IS.4 2552 20 US-10-425-114-24639 Sequence 2463 38 29.4 IS.3 487 10 US-09-918-995-12674 Sequence 2421 40 29.4 IS.3 614 13 US-10-027-632-221811 Sequence 2218 41 29.4 IS.3 614 17 US-10-027-632-221811 Sequence 2218 42 29.4 IS.3 614 17 US-10-027-632-221811 Sequence 2218 43 29.4 IS.3 614 17 US-10-027-632-221812 Sequence 2218 43 29.4 IS.3 614 17 US-10-027-632-221812 Sequence 2218 43 29.4 IS.3 614 17 US-10-027-632-221812 Sequence 2218 43 29.4 IS.3 614 17 US-10-369-493-3346195 Sequence 2218 44 29.4 IS.3 3612 17 US-10-369-493-3346195 Sequence 2218 45 29.2 IS.2 507 9 US-09-795-692-4795 Sequence 2218 45 29.2 IS.2 507 9 US-09-795-692-4795 Sequence 3248 45 29.2 IS.2 507 9 US-09-795-692-4795 Sequence 3248 45 29.2 IS.2 507 9 US-09-196-692-4795 Sequence 3248 45 29.2 IS.2 907 9 US-09-196-692-4795 Sequence 3248 45 29.2 IS.2 S07 9 US-09-196-692-4795 Sequence 2218 46 29.4 IS.3 3612 17 US-10-369-493-3346195 Sequence 2218 46 29.4 IS.3 3612 17 US-10-369-493-3346195 Sequence 2218 47 29.4 IS.3 3612 17 US-10-369-493-3346195 Sequence 3248 48 29.4 IS.2 S07 9 US-09-196-692-4795 Sequence 3248 49 29.4 IS.2 S07 9 US-09-196-692-4795 Sequence 3248 40 00000054865A1 5800000054865A1 5800000054865A1 5800000054865A1 5800000054865A1 58000000054865A1 58000000054865A1 58000000054865A1 58000000054865A1 58000000054865A1 58000000054865A1 58000000054865A1 580000000054865A1 580000000054865A1 58000000054865A1 580000000054865A1 580000000054865A1 580000000054865A1 58000000000000000000000000000000000000	n u	5	15.		17	-10-264-213-1	120,
33 29.6 15.4 453 13 US-10-027-632-266872 Sequence 2668 34 29.6 15.4 453 17 US-10-027-632-266872 Sequence 2668 35 29.6 15.4 2510 18 US-10-425-114-24639 Sequence 2461 37 29.6 15.4 2526 20 US-10-425-115-44214 Sequence 2495 38 29.4 15.3 4187 10 US-09-0187-192-998 Sequence 2208 40 29.4 15.3 614 13 US-10-027-632-221812 Sequence 2218 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 42 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 44 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 2218 44 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 45 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 45 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 46 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 47 29.4 15.3 614 17 US-10-027-632-221812 Sequence 2218 48 29.4 15.3 614 17 US-10-027-632-4195 Sequence 2218 48 29.4 15.3 367 17 US-10-027-632-4195 Sequence 2218 49 29.4 15.3 367 17 US-10-059-196-692-4795 Sequence 4419 40 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 4419 41 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 4419 42 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 4419 44 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 4419 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4419 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4419 46 20.0500054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-30000054865A1 500-816-3000054865A1 500-816-30000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000054865A1 500-816-3000568665A1 500-816-300056865A1 500-816-300056865401 500-816-3000568654000056865400 500-80005686540	1.63	5	15.	H	19	-10-322-281-5	590,
34 29.6 15.4 453 17 US-10-027-632-266872 Sequence 266872 35 29.6 15.4 2510 18 US-10-425-114-24639 Sequence 24639, 36 29.6 15.4 2510 18 US-10-425-115-44214 Sequence 2268, 38 29.4 15.3 614 13 US-10-037-632-221811 Sequence 226811 40 29.4 15.3 614 13 US-10-027-632-221811 Sequence 221811 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 43 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 44 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 45 29.4 15.3 614 17 US-10-027-632-221812 Sequence 24195, 45 29.4 15.3 614 17 US-10-027-632-221812 Sequence 24195, 45 29.4 15.3 367 17 US-10-369-493-346136 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-493-346136 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-493-346136 Sequence 4795, A 45 29.4 15.3 16.1 10 US-09-196-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.4 15.3 16.1 10 US-09-196-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-196-692-4795 Sequence 4795, A 45 29.4 15.3 16.1 10 US-0916-8910, A 46 29.4 15.3 16.1 10 US-0916-8910, A 47 29.4 15.3 16.1 10 US-0916-8910, A 46 29.4 15.3 16.1 10 US/09816391A ALIGNMENT FULIMORI, Minoru ADPLICANT: FULIMORI, Minoru ADPLICANT: FULIMORI, Shunichiro	ŝ	م	15.		1	-10-027-632-26687	2668
35 29.6 15.4 2510 18 US-10-425-114-24639 Sequence 24639, 36 29.6 15.4 2556 20 US-0437-115-44214 Sequence 239. A 37 29.6 15.4 2505 20 US-0497-192-298 Sequence 230. A 39 29.4 15.3 614 13 US-10-027-632-221811 Sequence 221811 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 42 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221813 44 15.3 614 17 US-10-027-632-221812 Sequence 221813 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221813 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221813 44 229.4 15.3 614 17 US-10-027-632-221812 Sequence 23183 45 29.4 15.3 614 17 US-10-027-632-221812 Sequence 23183 45 29.4 15.3 614 17 US-10-369-493-46196 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 46 29.4 15.1 0S-005485A1 560-816-391A ALIGNMENT NO: US2005485A1 580-800548	ŝ	<u>б</u> .	15.		11	-10-027-632-26687	266872
36 29.6 15.4 2526 20 US-10-425-115-44214 Sequence 4214, 37 29.6 15.4 260027 13 US-10-087-122-298 Sequence 228, A 38 29.4 15.3 414 13 US-10-027-632-221811 Sequence 221811 40 29.4 15.3 414 17 US-10-027-632-221812 Sequence 221812 42 29.4 15.3 414 17 US-10-027-632-221812 Sequence 221812 43 29.4 15.3 414 17 US-10-027-632-221812 Sequence 221812 43 29.4 15.3 514 17 US-10-027-632-221812 Sequence 221812 44 29.4 15.3 517 US-10-027-632-221812 Sequence 221812 45 29.4 15.3 512 17 US-10-027-632-221812 Sequence 221812 45 29.4 15.3 512 17 US-10-37-632-221812 Sequence 23463, 45 29.4 15.3 512 17 US-10-36-4393-3463 Sequence 24595, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.4 15.3 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 4795, A 45 29.4 15.3 3612 17 US-10-369-4393-46196 Sequence 1, Application US/09816391A 5000054865A1 500054865	m	۰.	15.		18	-10-425-114-2463	24639,
37 29.6 15.4 260027 13 US-10-087-192-298 Sequence 2264, 38 29.4 15.3 487 10 US-09-918-995-12674 Sequence 22674, 39 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221812 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221813 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221813 44 29.4 15.3 614 17 US-10-027-632-221813 Sequence 23163, 45 29.4 15.3 617 17 US-10-27-652-221812 Sequence 3463, 46 29.4 15.3 617 17 US-10-369-493-3463 Sequence 3465, 47 29.4 15.3 617 17 US-10-369-493-3463 Sequence 4795, 48 29.4 15.3 507 9 US-09-796-692-4795 Sequence 4795, 49 29.4 15.3 3612 17 US-10-369-439-46196 40 29.4 15.3 507 9 US-09-796-692-4795 Sequence 4795, 40 29.4 15.3 10 00-916-692-4795 Sequence 4795, 40 29.4 15.3 10 00-916-692-4795 Sequence 4795, 41 29.4 15.3 10 00-916-302-4795 Sequence 4795, 42 29.2 15.2 507 9 00-916-692-4795 Sequence 4795, 42 29.4 15.3 10 00-916-302-4795 Sequence 4795, 42 29.4 15.2 10 00-916-302-400-00-916 40 200-400-400-00-400-00-000-400-00-00-00-00	36	<u>،</u>	15.		20	-10-425-115-4421	44214,
38 29.4 15.3 487 10 US-09-918-995-15674 Sequence 12674, 39 29.4 15.3 614 13 US-10-027-632-221811 Sequence 221811 41 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812 42 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812 43 29.4 15.3 614 17 US-10-027-632-321812 Sequence 221812 44 15.3 614 17 US-10-027-632-321812 Sequence 23463, 45 29.4 15.3 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 46 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 47 29.4 15.3 861 17 US-10-369-439-46196 Sequence 4795, A 48 29.4 15.3 861 17 US-10-369-439-46196 Sequence 4795, A 49 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 40 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, A 41 209-816-391A ALIGNMENTS 500-816-391A ALIGNMENTS 500-816-391A ALIGNMENTS 500-816-391A ALIGNMENTS 500-816-301A ALIGNMENTS	37	<u>ه</u>	15.	õ	1	-10-087-192-298	298, A
39 29.4 15.3 614 13 US-10-027-632-221811 Sequence 221811, 40 29.4 15.3 614 13 US-10-027-632-221812 Sequence 221812, 41 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812, 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812, 44 29.4 15.3 867 17 US-10-369-493-346196 Sequence 23181, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap 20.9 15.3 3612 17 US-10-369-493-46196 Sequence 4795, Ap 20.9 15.3 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap 20.9 15.3 15.2 10.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	38	<u>б</u>	15.		2	-09-918-995-12674	12674,
40 29.4 15.3 614 13 US-10-027-632-221812 Sequence 221812, 41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221811, 43 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221815, 43 29.4 15.3 867 17 US-10-369-493-3463 Sequence 23165, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap 500 9 US-09-796-692-4795 Sequence 4795, Ap 501 1 - 09-816-391A ALIGNMENTS 500 9 16-391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Applicant INPORMATION: APPLICANT: FUNDORI, Minoru APPLICANT: FUNDORI, Minoru APPLICANT: FUNDORI, Minoru APPLICANT: FUNDORI, Minoru	'n	ъ.	15.		8	-10-027-632-22181	22181
41 29.4 15.3 614 17 US-10-027-632-221811 Sequence 221811, 42 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812, 43 29.4 15.3 614 17 US-10-026-632-221812 Sequence 23165, 45 29.2 15.2 507 9 US-09-796-693-4795 Sequence 4795, Ap 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap 100-816-391A ALIGNMENTS Sequence 4795, Ap 500-816-391A Sequence 1, Application US/09816391A Sequence 2, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 2, Application US/09816391A Sequ	4	б	15.		13	-10-027-632-22181	22181
42 29.4 15.3 614 17 US-10-027-632-221812 Sequence 221812, 43 29.4 15.3 867 17 US-10-369-493-3463 Sequence 33463, 44 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 46196, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap SULT 1 SULT 1 -09-816-391A-1 Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A SEQUENCE 1, Application US/09816391A APPLICANT: FUNIMORI, Minoru APPLICANT: FUNIMORI, Minoru APPLICANT: FUNIMORI, Shunichiro ADPLICANT: FUNIMORI, Shunichiro	4	5	15.		11	-10-027-632-22181	22181
 43 29.4 15.3 867 17 US-10-369-493-33463 Sequence 33465, 44 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 46196, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap ALIGNMENTS SULT 1 0.9-816-391A-1 Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A APPLICANT: FUJIMORI, Minoru APPLICANT: FUJIMORI, Shunichiro APPLICANT: APPLICANT, Shunichiro 	4	σ		-	1	-10-027-632-22181	e 221812,
44 29.4 15.3 3612 17 US-10-369-493-46196 Sequence 46196, 45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, Ap SULT ALIGNMENTS ALIGNMENTS Sequence 4795, Ap SULT APPLICANT Sequence 4795, Ap Sequence 1, Application US/09816391A APPLICANT APPLICANT TONORATION Sequence 1, Application US/09816391A APPLICANT TUPORMATION Sequence 1, Application US/09816391A APPLICANT TUPORMATION Sequence 1, Application US/09816391A APPLICANT TUPORMATION Shuncut APPLICANT TUPORUTION Shuncut APPLICANT TUPORUTION Shuncut APPLICANT TUPORUTION Shuncut APPLICANT APPLICANT APPLICANT <td>4</td> <td>σ</td> <td>1 15.3</td> <td>v</td> <td>11</td> <td>-10-369-493-3346</td> <td>e 33463,</td>	4	σ	1 15.3	v	11	-10-369-493-3346	e 33463,
45 29.2 15.2 507 9 US-09-796-692-4795 Sequence 4795, ALIGNMENTS SULT 1 -09-816-391A-1 Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Sequence 1, Application US/09816391A Application Tantouru Application Sausta	4	σ	15.5	5		S-10-369-493-4619	e 46196,
SULT 1 -09-816-391A-1 Sequence 1, Application US/0981639 Sequence 1, Application US/0981639 SEREAL INFORMATION: APPLICANT: FUJIMORI, Minoru APPLICANT: TANIGUCHI, Shunichiro	45	6	2 15.2	0	6	S-09-796-692-479	equence 4795,
SULT 1 -09-816-391A-1 Sequence 1, Application US/ Betent NO. US200554865A1 BEREAL INFO:US100154865A1 APPLICANT: FUJIMORI, Minor APPLICANT: TANIGUCHI, Shu APPLICANT: TANIGUCHI, Shu ADPLICANT: TANIGUCHI, Shu						ALIGNMENTS	
SULT 1 -09-816-391A-1 -09-816-391A-1 Patent No. US2002054865A1 BATENT INFORMATION: APPLICANT: FUJIMORI, Minor APPLICANT: TANIGUCHI, Shu ADPLICANT: TANIGUCHI, Shu ADPLICANT: ANANO							
plication US/ 0020054865A1 ATION: UIMORI, Minor ANIGUCHI, Shu	ESULT	1					
<pre>D. US20020054865 INFORMATION: NT: FUJIMORI, Mi NT: TANIGUCHI, NT: AMANO TUD</pre>	Sequei Sequei	16-391/ 1Ce l,	A-1 Applica	ion US/	0981	6391A	
ENERAL INFORMATION: APPLICANT: FUJIMORI, Mi APPLICANT: TANIGUCHI, ADPLICANT: AMANO JUD	Patent		JS200201	054865A1			
TANIGUCHI, MI	GENER	AL LNFL	ICMTITUC		:		
AMANO TUD	APPL.	TCANT:		۲ ۲ ۲) קיב		
	AFFL	LCANT:	DINAMA	~ F	UTC.	011	

APPLICANT: YAZWA, Kazuyuki APPLICANT: YAZWA, Kazuyuki APPLICANT: KANO, Yasunobu APPLICANT: SASAL, Tashyuki APPLICANT: SASAL, Tashyuki APPLICANT: SASAL, Tashyuki TITLE OF INVENTION: Anaerobic bacterium as a drug for cancer gene therapy FILE REFERENCE: 2001-WWC/01736 FILE REFERENCE: 2001-WC/01736 CURRENT FILING DATE: 2001-09-21 REIOR APPLICATION NUMBER: JP 00/287688 REIOR FILING DATE: 2000-09-21 NUMBER OF SEQ ID NOS: 3 SEQ ID NO 1 LENGTH: 600 TYPE: DNA ORGANISM: Bifidobacterium longum FEATURE:

Query Match 100.0%; Score 192; DB 9; Length 600; Best Local Similarity 100.0%; Pred. No. 3.7e-54; ; NAME/KEY: CDS ; LOCATION: (193)..(471) US-09-816-391A-1

2005
8
ч
••
0
4
••
ഹ
H
œ
Б
- E
Aug
Mon

<pre>Sequence 1, Application US/10470565 Publication No. U520040126870A1 GENERAL INFORMATION: APPLICANT: Societe des Produits Nestle S.A. TITLE OF INVENTION: NCC2705 - the genome of a Bifidobacterium FILE REFRENCE: 80290/WO CURRENT APPLICATION NUMBER: US/10/470,565 CURRENT APPLICATION NUMBER: US/10/470,565 CURRENT APPLICATION NUMBER: EP 01102050.0 PRIOR APPLICATION NUMBER: EP 01102050.0 PRIOR FILING DATE: 2001-01-30 NUMBER OF SEQ ID NOS: 2 SOFTWARE: PatentIn version 3.1 SOFTWARE: PatentIn version 3.1 LENGTH: 2256646 TYPE: DNO 1 CURANISM: Bifidobacterium longum US-10-470-565-1</pre>	Query Match 91.2%; Score 175.2; DB 19; Length 2256646; Best Local Similarity 97.4%; Pred. No. 9.2e-47; Matches 189; Conservative 0; Mismatches 3; Indels 2; Gaps 1; Qy 1 GCTGGGGGGGCGATGAAGTGGCTTGACAAGCATAATCTTGTCTGATTCGTCTATTT 60 Qy 1 GCTGGGGGGGCGATGAAGTGGCTTGACAAGCATAATCTTGTCTGATTCGTCTATTT 60 Dy 2242172 GCTGGGGGGGGCAATGAAGTGGGCTTGAAGCATAAATCTTGTCTGATTCGTCTATTT 60 Dy 61 TCAATACCTTGGGGGGGAAATGGATGAAGCATTAAAAGGCGGGTTTTGGTCGATTT 7 Qy 61 TCAATACCTTGGGGGGAAATGGATGAAGCATTAAAAGGCGGGTTTTGGTCGAAA 118 Dy 2242112 TCA-AATACCTTGGGGGGAAATGGATGAAGCATTAAAAGGCGGGTTTTGGTGGAAA 118 Qy 61 TCAATACCTTGGGGGGAAATGGATGAAGCCTTATAAAAGGCGGGTTTTGGTCGAGAAA 118 Dy 2242112 TCA-AATACCTTGATGACAACATGGACTAAGGCAGGAATTGATCGTGGGGGGTTTTTGGCGGGGGGAAATGGATGAAAGCCTTATAAAAGGGCGGGTTTTTGGGGGGGG	RESULT 4 US-10-425-115-60228/c US-10-425-115-60228/c Publication No. US20040214272A1 FUBLICANT: La Rosa, Thomas J. APPLICANT: La Rosa, Thomas J. APPLICANT: La Rosa, Thomas J. APPLICANT: Kovalic, David K. APPLICANT: Cao, Yongwei APPLICANT: Cao, Yongwei TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With	FILE REFERENCE: 38-21(53222)B CURRENT PAPLICATION NUMBER: US/10/425,115 CURRENT FILING DATE: 2003-04-28 NUMBER OF SEQ ID NOS: 369326 SEQ ID NO 60228 LENGTH: 425 TYPE: DNA ORGANISM: Zea mays FEATURE: OTHER INFORMATION: Clone ID: MRT4577_15492C.1 US-10-425-115-60228	Query Match 18.0%; Score 34.6; DB 20; Length 425; Best Local Similarity 51.6%; Pred. No. 0.47; Matches 79; Conservative 0; Mismatches 74; Indels 0; Gaps 0;	QY 16 CATGAAGGGCTTGACAAGCATAATCTTGTCTGGTTGTTTTTCAATACCTTGGGG 75 	0y 76 AAATAGATGTGAAAACGTTATAAAACGGGGGTTTTGGCAGAAACATGGCGTAGTATCAT 135 0y 1 1 1 1 1 1 1 127 AATGACGAATTAATACATTTGAAATGCTATTTACATAATAGCACTGCTAGACT 68 12 AATGACGCAATTAATACATTTGAAATGCCTATTTACATAATGCACTGCTAGACT 68
Matches192;Conservative0;Mismatches0;Idels0;Gaps0;QY1GCTGGGGCGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	RESULT 2 US-10-782-899-1 US-10-782-899-1 US-10-782-899-1 Fublication No. US20050025745A1 GENERAL INFORMATION APPLICANT: FUJIMORI, MINORU APPLICANT: TANIGUCHI, SHUNICHIRO APPLICANT: TANIGUCHI, SHUNICHIRO APPLICANT: TANIGUCHI, SHUNICHIRO APPLICANT: XAZAWA, KAZUYUKI APPLICANT: XAZAWA, KAZUYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANT: SASAKI, TAKAYUKI APPLICANTON NUMBER: 2004-02-23 PRICE APPLICATION NUMBER: 076-00-23 PRICE APPLICANTON NUMBE	<pre>price Frink Date: 2000-09-21 provemark of Sec ID NOS: 4 second no 1 secon</pre>	Query Match100.0%Score 192; DB 21; Length 600;Best Local Similarity 100.0%; Pred. No. 3.7e-54;Best Local Similarity 100.0%; Pred. No. 3.7e-54;Matches 192; Conservative 0; Mismatches 0; Indels 0; Gaps 0;Qy1 GCTGGGCGGCGCCATGAAGTGGCTTAACAAGTGATAATCTTGTCGATTGGTCTAATT 60Db1 GCTGGGCGGGGGGGCGATGAAGTGGCATGAAACCATAAACCTTGTCGGATTGGTCTAATT 60Cy61 TCAATACCTTCGGGGGGGCGCATGAAGTGGCATAAACCTTATAAACGGGGGGGG	Qy 121 ATGCGCTAGTATCATTGATGACAACATGGAAAAGTGCTTGTCCCCTGACCCAA 180 Db 121 ATGCGCTAGTATTGATGACAACATGGACTAAGCAAAAGTGCTTGTCCCCTGACCCAA 180 Db 121 ATGCGCTAGTATCATTGATGACAACATGGACTAAGCAAAAGTGCTTGTCCCCTGACCCAA 180	Qy 181 GAAGGATGCTTT 192 0 181 6111111111 111	RESULT 3 、 US-10-470-565-1/C

-899-1_copy_1_192.rnpb Page 3	<pre>FPLICATION NUMBR: US 60/156,358 FPLICATION NUMBR: US 60/156,358 FPLICATION NUMBR: US 60/146,002 FPLICATION NUMBR: US 60/146,002 FPLICATION NUMBR: US 60/146,002 FPLICATION NUMBR: US 60/146,002 FPLICATE: PARSIAN: HUMAN SECTION 01 1733, 2010 10 FPLICATE: PARSIAN: HUMAN US-10-027-632-167810 FPLICATE: 01 FPLICATE: 0</pre>	
Mon Aug 8 15:40:18 2005	QY136 TCATCACATCGGATAAGCGAAAGTCCTTGT 169DD67 TACTCGCAACAATAGCTAAACGGAAAGTCGTTAAACGGAAGGGTGGT 35RESULT 567 TACTCGCCAACAATAGCTAAACGGAAGGGGTGGT 35RESULT 5US-10-007-632-167810/cUS-10-007-632-167810/cUS-10027632Sequence 167810/cUS-10027632Sequence 167810/cUS-10027632Sequence 167810/cSequence 167810/cSequence 167810/cUS-10027632Sequence 167810/cSequence 167810/cSequence 167810/cSequence 167810/cSequence 167810/cIdentification and Mapping of Single NucleotideTITLE 0F INVENTION: Polymorphisms in the Human GenomeTITLE 0F INVENTION: Polymorphisms in the Human GenomeTITLE 0F INVENTION: Polymorphisms in the Human GenomeTITLE 0F INVENTION: NUMBER: US/10/027632CURRENT APPLICATION NUMBER: US/0198,676PRIOR APPLICATION NUMBER: US 60/198,676PRIOR APPLICATION NUMBER: US 60/198,676PRIOR PLINCATION NUMBER: US 60/193,483PRIOR PLINCE DATE: 2000-07-12PRIOR PLINCE DATE: 2000-07-20PRIOR PLINCE DATE: 2000-07-20	Query Match17.3%; Score 33.2; DB 13; Length 824;Best Local Similarity 59.6%; Pred. No. 1.9;38; Indels 0; Gaps 0;Matches 56; Conservative 0; Mismatches 38; Indels 0; Gaps 0;Db384 ATATAAATGAGAAAACCCTATAAAACGCGGGGTTTTCAAGGATAGACATGGGTAGACATGATCAT 135Db384 ATATAAATGGGAAAACCCTATAAAACGCGGGGTTTTAAAAGGGTTGAACATGGGTTGAACATGGGTTGAACATGGAACATCATGGGAAAAGGCTGAAAAGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGAACATTTTAAAAGGGGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGAGGGTTGAACAGTCATAAGGGGGGTTGTAACDb384 ATATAAATGGGAAAAGGCGGGTTGTAACGCAAGGGTTGAACATGGGTTGAACATGGGTTGAACATGGGAACATGTTAAAGGGGGGGTTGAACATGGGAACAAGGCAAAAGGCGAGGGTTGAACATGGGAGGGTTGAACATGGGAACAAGGGGTTGAACATGGGAACAAGGGGTTGAACATTTAAAAGGGGGGTTGAACATGGGAACAAGGCAAGGGGTTGAACATTTAAAAGGGGGGTTGAACATGGAAGGGTTGAACATGGGAACAAGGGGTTGAAAGGGGGGTTGAACCAGGGGTTGAACATGGGAGGGGGTTGAAAGGGGGGTTGAACATGGGAAGGGGTTGAAAGGGGGGGTTGAACATGGGAGGGGGTTGAAAGGGGGGGTTGAACATGGGAGGGGGGTTGAACAGGGGGGTTGAACATTTTAAAGGGGGGGTTGAACAGGGGGGTTGAACAGGGGGTTGAACATGGAAGGGGTTGAACAGGGGGGTTGAACATGGAAGGGGGGTTGAACAGGGGGGTTGAACATGGGAGGGGGTTGAACAGGGGGGTTGAACGGGGGGTTGAACGGGGGGTTGAACATGGGAGGGGGTTGAACAGGGGGGGTTGAACAGGGGGGGG

7

Matches 77; Conservative 0; Mismatches 75; Indels 0; Gaps 0; CN 35 CATNATCTTGTCTATTCGTCATTTCGTCGGGGGGAAATGATGGGGGGGAAATGATGGGGGGGG	<pre>% SOFTWARE: Patentin version 3.0 % SEQ ID NO 2058 % LENTH: 3011208 % CRGANISM: Listeria innocua US-10-399-221-2058 US-10-399-221-2058 US-10-399-221-2058 US-10-399-221-2058 % Ouery Match 16.7%; Score 32; DB 17; Length 3011208; @uery Match 77; Conservative 0; Mismatches 75; Indels 0; Gaps 0; Matches 77; Conservative 0; Mismatches 75; Indels 0; Gaps 0; QY 35 CATAATCGTCGATTCGTCTATTTTCGATACCTTCGGGGAAATAGATGGTGAAAAACCCT 94</pre>	Db 1529778 Catgadactedeacceccettecatteriation 111111 11111 1111 11229337 Oy 95 TATAAAACGEGGGGTTTTCGCAGAAACATGGGGGAAGAGGCCATTGAAAACACT 154 Oy 95 TATAAAACGEGGGGTTTTCGCAGAAACATGGCGTAGTTATCATGAGAGAACACTGACAACTAGCACTAA 154 Db 1529838 GATTACGCAATGAATGTTGCCGGGAAACTGCTTCTACTTTTGCTGAAATGATTATTGCCGAT 1529838 GATTACGCAATGAATGTTGCCCAAGAAGGA 186 Qy 155 GCAAAAGTGCTTGTCCCCTGGCCAAGAAGGA 186 1	RESULT 11 US-10-425-115-71957, Application US/10425115 5 Sequence 71957, Application US/10425115 5 Sequence 71957, Application US/10425115 6 Distribution No. US20040214272A1 6 Supericant: La Rosa, Thomas J. 7 APPLICANT: La Rosa, Thomas J. 7 APPLICANT: Shou, Yihua 7 PELCONT: Shou, Yihua 7 PELCONT: Shou, Yihua 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With 7 TILE OF INVENTION: NUCLEIC Acid Molecules Associated With 7 TILE OF INVENTION: NUCLEIC Acid Molecules Associated With 7 TILE OF INVENTION: TILE OF INVENTION: TILE OF INVENTION TILE
<pre>Sequence 6585, Application US/10027632 Publication No. U52003020407549 Fublication No. U52003020407549 FiltsERERAL INFORMATION: dentification and Mapping of Single Nucleotide Filts REPERENCE: 100827.129 CURRENT APPLICATION NUMBER: US/10/027,632 FILS REPERENCE: 100827.129 CURRENT APPLICATION NUMBER: US/01/027,632 FILS REPERENCE: 100807.129 CURRENT APPLICATION NUMBER: US/01/027,632 FILS REPERENCE: 100807.129 FILS REPERENCE: 100807.129 FILS REPERENCE: 00004-20 FILS REPERENCE: 00004-20 FILS APPLICATION NUMBER: US 60/199.656 FILS PRICE FILNE DATE: 2000-04-20 FILS APPLICATION NUMBER: US 60/199.656 FILS REPLICATION NUMBER: US 60/199.656 FILS REPLICATION NUMBER: US 60/199.656 FILS PRICE APPLICATION NUMBER: US 60/199.656 FILS PRICE REPLICATION NUMBER: US 60/195.218 FILS REPLICATION NUMBER: US 60/195.218 FILS REPLICATION NUMBER: US 60/156.358 FILS REPLICATION NUMBER: U</pre>	Query Match16.9%Score 32.4; DB 17; Length 484;Best Local Similarity60.7%; Pred. No. 2.8;32; Indels0; Gaps0;Matches51; Conservative1; Mismatches32; Indels0;0;Qy36 ATAATCTTGTCTGATTGTCTATTTTCAATACCTTGGGGGAAATAGATGGGGGGAAAAAGCCTT95110111	RESULT 9 US-10-398-221-8/c Sequence 8, Application US/10398221 ; Publication No. US20040018514A1 ; GENRRAL INFORMATION: APPLICANT: GLASER, Philippe ; APPLICANT: GLASER, Philippe ; TITLE OF INVENTION: Listeria innocua, genome and applications ; TITLE OF INVENTION: Listeria innocua, genome and applications ; CURRENT APPLICATE: 344 702 - US ; CURRENT APPLICATE: US/10/398,221	<pre>FRIOR APPLICATION NUMBER: PCT/FR 01/03 061 PRIOR FILING DATE: 2001-10-04 PRIOR FILING DATE: 2001-10-04 PRIOR FILING DATE: 2001-10-04 NUMBER: PE 2001-10-04 SOFTWARE: PatentIn version 3.0 SOFTWARE: PatentIn version</pre>

1

us-10-782-899-1_copy_1_192.rnpb

Page 4

Mon Aug 8 15:40:18 2005

Db 253 TGTCTACCAATGTGTGTGTGTGTACTAGTACTAAAAAAAA	Query Match16.2%Score 31.2; DB 10; Length 18272; Best Local Similarity 60.7%; Pred. No. 41; Matches 51; Conservative 0; Mismatches 33; Indels 0; Gaps 0; Oy 71 CGGGGAAATGGTGGAAAACCCTTATAAAACGCGGGTTTTCGCAGAAAACGGCGGTAGT 130 Db 17088 CGAGCAGGAGAATGGACGAGGAGAGAAATGGGGGGGGGG	RESULT 14 US-10-021-323-5754 Sequence 5754, Application US/10021323 Fublication No. US20040123340A1 GENERAL INFORMATION: APPLICANT: Peingen, Jill APPLICANT: Feng, Paul C.C. APPLICANT: Fincher, Karen L. APPLICANT: Ziegler, Todd E. TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE OF INVENTION: Nucleic Acid Molecules and Other Molecules Associated With TITLE REFRENCE: 38-21(5274)B FILE REFRENCE: 38-21(5274)B CURRENT FILING DATE: 2001-12-14 PRIOR APPLICATION NUMBER: US 60/255, 619 PRIOR PLICATION NUMBER: US 60/255, 619 PRIOR PLICATION NUMBER: US 60/255, 619 RUMBER OF SEO ID NOS: 17880 SEO ID NO 5754	<pre>public the the transmission of transmission of the transmission of the transmission of the transmission of the transmission of transm</pre>
<pre>ORGANISM: Zea mays FRANTES: NAWE/KEY: unsure ioCATFON: (1)(732) OTHER INFORMATION: unsure at all n locations FRANTER: NAME/KEY: NAME/KEY: COTHER INFORMATION: Unsure at all n locations FRANTER: NAME/KEY: SEATURE: COTHER INFORMATION: Unsure at all n locations FRANTER: Norther is 5%; Cone ID: MRT4577_165627C.1 US-10-425-115-71957 Ouery Match Best Local Similarity 58.5%; Pred. No. 6.3; Matches 55; Conservative 0; Mismatches 39; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 39; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 39; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 39; Indels 0; Gaps 0; Matches 55; Conservative 0; Mismatches 39; Indels 0; Gaps 0; Matches 55; Conservative 1101111111111111111111111111111111111</pre>	RESULT 12 US-10-674-124A-12097/c 5 Sequence 12097, Application US/10674124A F Publication No. US20040197797A1 6 GENERAL INPORMATION: APPLICANT: INOKO, Hidetoshi APPLICANT: INOKO, Hidetoshi APPLICANT: INOKO, Hidetoshi TITLE OF INVENTION: GENE MAPPING METHOD USING MICROSATELLITE TITLE OF INVENTION: GENETIC POLYMORPHISM MARKERS FILLE REFERENCE: ORIN-003CIP FULR REFERENCE: ORIN-003CIP CURRENT FILLNG DATE: 2003-09-26 CURRENT FILLNG DATE: 2003-09-26	PLICATION NUM LING DATE: 200 LING DATE: 200 LING DATE: 200 PLICATION NUM PLICATION NUM LING DATE: 200 PLICATION NUM LING DATE: 200 PLICATION NUM LING DATE: 200 PLICATION NUM LING DATE: 200 PLICATION NUM NM AM NM NM NM NM NM NM NM NM NM N	

Page 5

~ Mon Aug 8 15:40:18 2005

1

us-10-782-899-1_copy_1_192.rnpb

48 GATTCGTCTATTTTCCAATACCTTCGGGGGAAATAGATGTGGAAAAACCCCTTATAAAAACGCGGG 107 235 GAATCATTTGAGTTCAAGACTGCTGAAGAAAAAGTTATCGAAGGTCTTGACCAAGCAGTG 176 15 ATGACGATGAATAAGGGAGAGAATAGCTTTGGTGACAATATGCCTTCTTG 116 108 TTTTCGCAGAAACATGCGCTAGTATCATTGATGACAACATGGGACTAAGCCAAAAGTGCCTTG 167 0; Gaps ustructor:usstand bublication No. US20040016025A1 Sequence 5041, Application US/10260238 publication No. US20040016025A1 GENERAL INFORMATION: APPLICANT: Budworth, Paul R. APPLICANT: Budworth, Paul R. APPLICANT: Cooper, Bret APPLICANT: Golf, Steven P. APPLICANT: Golf, Steven P. APPLICANT: Golf, Steven A. APPLICANT: Funiyaki APPLICANT: Frowart, Nicholas APPLICANT: Provart, Nicholas PRIOR APPLICANTON: PROVARES PRIOR APPLICANTON NUMBER: US 60/370, 620 NUMBER OF SEQ ID NOS: 6077 SEQ ID NO 5041 APPLICATION NOS: 6077 APPLICANT APPLICATION NOS 5077 APPLICANT APPLICATION NOS 5077 APPLICAN Query Match 15.9%; Score 30.6; DB 17; Length 549; Best Local Similarity 51.9%; Pred. No. 12; Matches 69; Conservative 0; Mismatches 64; Indels 0. Search completed: August 6, 2005, 01:45:25 Job time : 428.986 secs FEATURE: RAME/KEY: misc feature LOCATTON: (547)...(547) OTHER INFORMATION: n = any nucleotide US-10-260-238-5041 FEATURE: NAME/YERY: misc_feature NOCATION: (12)..(13) OTHER INFORMATION: n = any nucleotide FEATURE: NAME/FETY: misc_feature LOCATION: (23)..(23) OTHER INFORMATION: n = any nucleotide FEATURE: NAME/KEX: misc feature LOCATION: (415).(416) OTHER INFORMATION: n = any nucleotide 168 TCCCCTGACCCAA 180 115 TCCACTGAATCAA 103 TYPE: DNA ORGANISM: Musa acuminata RESULT 15 US-10-260-238-5041/c q q $\hat{\mathbf{a}}$ \mathbf{S} g 5

ö

8 15:40:17 2005 Mon Aug

٦.,

٩

	Ltd.	
5.1.6	Compugen	
ver	- 2005	
enCore	1993	
g	<u></u>	
	Copyright	

OM nucleic - nucleic search, using sw model

Run on:

August 5, 2005, 23:28:19 ; Search time 102.28 Seconds (without alignments) 3071.607 Million cell updates/sec

\$

US-10-782-899-1_COPY_1_192 192 1 gctggggggggggggggggggggtga.....tgacccaagaaggatgcttt 192 Title: Perfect score: Sequence:

Scoring table:

IDENTITY NUC Gapop 10.0, Gapext 1.0

1202784 segs, 818138359 residues Searched: 2405568 Total number of hits satisfying chosen parameters:

Minimum DB seq length: 0 Maximum DB seq length: 200000000

Post-processing: Minimum Match 0% Maximum Match 100% Listing first 45 summaries

Database :

/cgn2_6(ptodata/1/ina/5A_COMB.seq:* /cgn2_6(ptodata/1/ina/5B_COMB.seq:* /cgn2_6(ptodata/1/ina/6A_COMB.seq:* /cgn2_6(ptodata/1/ina/6A_COMB.seq:* /cgn2_6(ptodata/1/ina/6B_COMB.seq:* /cgn2_6(ptodata/1/ina/PcTUS_COMB.seq:* /cgn2_6(ptodata/1/ina/backfiles1.seq:* Issued Patents NA:* 1: /cgn2_6/ptodata/1, 2: /cgn2_6/ptodata/1, 3: /cgn2_6/ptodata/1, 4: /cgn2_6/ptodata/1, 5: /cgn2_6/ptodata/1, 6: /cgn2_6/ptodata/1,

Pred. No. is the number of results predicted by chance to have a score greater than or equal to the score of the result being printed, and is derived by analysis of the total score distribution.

Result No. 1 C 2 C 2	Scor 32. 31.	& Query Match 17.0 16.2	\$ Query Match Length 17.0 22404 16.2 22404 16.2 22404	D DB	SUMMARI 	on 31601, 11765,
		222222 22222 22222	46745 601 58768 1569 3204 10303	ব' ব' ব' ব' ব' ব'	US-09-949-016-13964 US-09-949-016-48509 US-09-949-016-13175 US-09-710-279-603 US-09-634-238-410	
0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	22222222222222222222222222222222222222	99797 601 36855 768 768 2385 3077 3077	* * * * * * * * *	US-09-949-016-15255 US-09-949-016-187277 US-09-949-016-187277 US-09-134-000C-3331 US-09-949-016-142351 US-09-949-016-142351 US-09-461-912A-27 US-09-461-912A-27 US-09-426-657-3	152555 18727 170957 3331, 14235 4010, 27, AF
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			3126 3253 4623 4623 601 832 832 832 9126 36791 36791 42479 42479 42479	। N न व क क क व क क क	US-08-477-396A-3 US-08-4426-627-5 US-09-949-016-1576 US-09-949-016-44696 US-09-949-016-44696 US-09-949-016-16391 US-09-949-016-16631 US-09-949-016-16631 US-09-949-016-16632 US-09-949-016-16632 US-09-949-016-16632 US-09-949-016-16632	

Sequence 13019, A Sequence 1, Appli Sequence 1, Appli Sequence 1, Appli Sequence 11808, A Sequence 13388, A Sequence 12386, A Sequence 12386, A Sequence 12386, A Sequence 12386, A Sequence 12386, A Sequence 12388, App Sequence 12918, App Sequence 1291, App Sequence 1291, App Sequence 1291, App Sequence 1291, App	Encoded Human Proteins.	Length 278; Indels 0; Gaps 0; TTTTCAATAATTTKGGGGGAA 77 TTTCCAATAATTTKGGGGGAA 158 AACATGGGCTAGTAATTG 137
<pre>2 4 US-09-949-016-13019 7 4 US-09-596-002-36 21 4 US-09-557-884-1 2 4 US-09-557-884-1 1 4 US-09-949-016-11808 1 4 US-09-949-016-11808 0 4 US-09-949-016-117122 3 4 US-09-949-016-117122 5 4 US-09-949-016-117122 5 4 US-09-949-016-117122 8 4 US-09-949-016-117369 7 4 US-09-949-016-117369 7 4 US-09-949-016-117369 8 4 US-09-949-016-117369 7 4 US-09-949-016-117369 9 3 US-09-949-016-117369 9 4 US-</pre>	ALIGNMENTS 9513999C J.B. equence Tags and 09/513,999C /122,487	<pre>imilarity 17.0%; Score 32.6; DB 4; Length 278; imilarity 51.0%; Pred. No. 0.11; ; Conservative 0; Mismatches 74; Indels 0; Gaps rGAAGTGGGTTGGCTTATCGTGTATTCATAATTTKGGGGGG TCATGTGGATTGTTTTCGTGTATTCATAATTTKGGGGGGG TCATGTGGATTGTTTTCGTGTATTCATAATTTKGGGGGGG TATAGTGGATTGTTTTCGGGGGGGTTTTCGGGGGGGGTATTCATAATTTKGGGGGG ATGATGTGATTATAAAGCGGGGGTTTTCGCAGAAACTGCGGGGGGGTATCATTG ATGATGTGATAATATAAAGCGGGGGTTTTCGCAGAAACTGGGGGGG ATGATGTGATTATAAAGCGGGGGTTTTCGCAGAAACTGGGGGGG ATGATGGGATGATAATATACGGGGTGGGGT</pre>
8 29 15.1 91062 29 15.1 92407 29 15.1 183012 29 15.1 183012 29 15.1 183012 29 15.1 183012 29 15.1 183012 29 15.0 636591 28.6 14.9 2636593 28.6 14.9 2636593 28.6 14.9 2636593 28.8 14.9 2636593 28.4 14.9 2636593 28.5 14.4 850381 28.4 14.8 73081 28.2 14.4 850381 28.2 14.6 61178 28 14.6 61178 28 14.6 61178 27.8 14.6 7309 27.8 14.5 1179 27.8 14.5 1179 27.8 14.5 1273	1 1-999C-31601 at No. 6703961 at No. 6703961 at No. 6703961 at No. 6703961 LICANT: Dunds Milne E LICANT: Dunds Milne E LICANT: Dunds Milne E LICANT: Dunds Milne E LICANT: Dunds Milne E REEFERCES 59.US2.R E REFERENCE 59.US2.R E REFERENCE 59.US2.R E REFERENCE 59.US2.R E REFERENCE 59.US2.R APPLICATION NUMBER OR FILING DATE: 1999- BER OF SEQ ID NOS: 36 TWARE PATENTON NUMBER OR FILING DATE: 1999- BER OF SEQ ID NOS: 36 TWARE: PATENTON NUMBER OR FILING DATE: 1999- BER OF SEQ ID NOS: 36 TWARE: PATENTON NUMBER ATURE: PATENTON NUMBER MERTH: 278 PE: DNA NGTH: 278 PE: DNA NGTH: 278 PE: DNA MERTHON SEC CATION: 152 CATION: 152 CATION: 152 CATION: K=G CATION: 152 CATION: K=G CATION: 152 CATION: K=G CATION: K=G	<pre>/ Match Local S l</pre>
	RECORDED FOR CONTRACT OF CONTR	Query Best J Matcha Oy Oy Ob Ob Ob Ob Cy Cy Cy Cy Cy Cy SSULT RES

2005
5:40:17
Aug 8 1
Mon A

QY 131 ATCATTGATGACATGGACTAA 154 DD 19111 AACACCCATGGGACGGACTCA 19088 DD 19111 AACACCCATGGGACGGACTCA 19088 RESULT 4 ESCURPTAL 111111111111111111111111111111111111	Us-09-949-016-11964 Us-09-949-016-11964 Devry Match Bert Local Similarity 54.34; Pred. NO. 4.5, Matches 63; Conservative 0; Mismatches 53; Indels 0; Gaps 0; Matches 63; Conservative 0; Mismatches 53; Indels 0; Gaps 0; 4 6 Crearricorranterricoanactorraceananactorraceananactorraceananactor 2 4 6 Crearricorranterricoanactorraceananactorraceananactorrand 2 40974 CHC/HCH/HILL HILL HILL HILL HILL HILL HILL HIL
<pre>TITLE OF INVENTION: FOLYMORPHISMS IN KNOWN GENES ASSOCIATED TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF FILLE REFERENCE: CLOOIJO7 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT PILING DATE: 2000-04-14 FRIOR FILING DATE: 2000-10-30 FRIOR FILING DATE: 2000-10-30 FRIOR FILING DATE: 2000-09-08 FRIOR FILING DATE: 2000-09-08 FRIOR FILING DATE: 2000-09-09 FRIOR FILING DATE: 2000-09-08 FRIOR FILING DATE: 2000-10-30 FRIOR FILING DATE: 2000-30-98 FRIOR FILING DATE: 2000-30-98 FRIOR FILING DATE: 2000-31.1 FRIOR FILING DISTING DISTING DISTING FRICH SIJ CONSENTATIONAGGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGA</pre>	19111 SULT 3 -09-949-016- Sequence 155 BREAL INFO APPLICANT: TITLE OF IN TITLE OF IN TITLE OF IN TITLE OF IN TITLE OF IN FILE RFEHER APPLICANT: TITLE OF IN FILE OF I

-1_copy_1_192.rni Page 3	<pre>; OTHER INFORMATION: Description of Artificial Sequence: synthetic ; OTHER INFORMATION: nucleic acid sequence US-09-710-279-603 Us-09-710-279-603 Query Match Best Local Similarity 57.3%; Pred. No. 1.6; Best Local Similarity 57.3%; Pred. No. 1.6; Matches 55; Conservative 0; Mismatches 41; Indels 0; Gaps 0; QY 49 ATTCGTCTATTTTCAAACCTTCGGGGAAATAGATGATGAAAACCCTTATAAAACGCGGGT 108 </pre>	Qy 109 TTCGGCAGAAACATGCGCTAGTATTGATGACAA 144 Db 147 TAACGCGGATATATTGATGGTTTGATTGATGACAAA 182 Db 147 TAACGCGGATATATTGATGGTTTGATTGATGACAAA 182 RESULT 8 187 111 <t< th=""><th> ÖTHER INFORMATION: DESCRIPTION OF ARTIFICIAL Sequence: Synthetic ÖTHER INFORMATION: nucleic acid sequence US-09-710-279-3485 US-09-710-279-3485 US-09-710-279-3485 Ouery Match Best Local Similarity 57.3%; Pred: No. 2.3; Duert Matches 55; Conservative 0; Mismatches 41; Indels 0; Gaps 0; QY 49 ATTCGATCATATACCTTCGGGGAAATAGATCGATGAAAACCCTTATAAAACGGGGT 108 D 542 ATATGAATAATACATAGACTAGAGGAAATAGATCGTCACTATAAAACGGGGGT 108 D TATGGAAAACATGGCTAGTAATAGCTAGATGATGATGATGATAAAA D TATGGGGAAAAATAATGAGGCAACTAGATGATGATAAAAA D TATGGGGAAAAATTGATGATGATTGATGATGATGATGATAAAA D TATGGGGAAAAATTGATGATTGATGATGATGATGATGATAAAAA D TATGGGGAAAAATTGATGATTGATGATGATGATGATGATAAAAA D TATGGGGGAAAAATTGATGATTGATGATGATGATGATAAAAAA</th><th>RESULT 9 US-09-634-238-410/c Sequence 410, Application US/09634238 Fatent No. 6544772 GENERAL INFORMATION: APPLICANT: Giann, Matthew APPLICANT: Bloksberg, Leonard, N. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Christenson, Anna C. APPLICANT: Christenson, Anna C. APPLICANT: Reid, Julian R. APPLICANT: Coolbear, Timothy APPLICANT: Coolbear, Timothy APPLICANT: Coolbear, Timothy TITLE OF INVENTION: Polynucleotides, materials incorporating TITLE OF INVENTION: Polynucleotides, materials incorporating TITLE REFERENCE: 11000.1043U1 CURRENT APPLICANTION NUMBER: US/09/634,238 CURRENT FILING DATE: 2000-08-08</th></t<>	 ÖTHER INFORMATION: DESCRIPTION OF ARTIFICIAL Sequence: Synthetic ÖTHER INFORMATION: nucleic acid sequence US-09-710-279-3485 US-09-710-279-3485 US-09-710-279-3485 Ouery Match Best Local Similarity 57.3%; Pred: No. 2.3; Duert Matches 55; Conservative 0; Mismatches 41; Indels 0; Gaps 0; QY 49 ATTCGATCATATACCTTCGGGGAAATAGATCGATGAAAACCCTTATAAAACGGGGT 108 D 542 ATATGAATAATACATAGACTAGAGGAAATAGATCGTCACTATAAAACGGGGGT 108 D TATGGAAAACATGGCTAGTAATAGCTAGATGATGATGATGATAAAA D TATGGGGAAAAATAATGAGGCAACTAGATGATGATAAAAA D TATGGGGAAAAATTGATGATGATTGATGATGATGATGATAAAA D TATGGGGAAAAATTGATGATTGATGATGATGATGATGATAAAAA D TATGGGGAAAAATTGATGATTGATGATGATGATGATGATAAAAA D TATGGGGGAAAAATTGATGATTGATGATGATGATGATAAAAAA	RESULT 9 US-09-634-238-410/c Sequence 410, Application US/09634238 Fatent No. 6544772 GENERAL INFORMATION: APPLICANT: Giann, Matthew APPLICANT: Bloksberg, Leonard, N. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Lubbers, Mark W. APPLICANT: Christenson, Anna C. APPLICANT: Christenson, Anna C. APPLICANT: Reid, Julian R. APPLICANT: Coolbear, Timothy APPLICANT: Coolbear, Timothy APPLICANT: Coolbear, Timothy TITLE OF INVENTION: Polynucleotides, materials incorporating TITLE OF INVENTION: Polynucleotides, materials incorporating TITLE REFERENCE: 11000.1043U1 CURRENT APPLICANTION NUMBER: US/09/634,238 CURRENT FILING DATE: 2000-08-08
Mon Aug 8 15:40:17 2005 Won Aug 8 15:40:17 2005	Best Local Similarity 58.1%; Pred. No. 0.86;Matches 54; Conservative 0; Mismatches 39; Indels 0; Gaps 0;Qy56 TATTTTCAATACCTTCGGCGAAATAGATGGTGGAAAAACCCTTATAAAAGGGGGGGG	RESULT 6 US-09-949-016-13175/c US-09-949-016-13175/c Sequence 13175, Application US/09949016 Patent No. 681239 GENERAL INFORMATION: APPLICANT: VENTER, J. Craig et al. APPLICANT: VENTER, J. Craig et al. TITLE OF INVENTION: POLNORPHISMS IN KNOWN GENES ASSOCIATED TITLE OF INVENTION: POLNORPHISMS IN KNOWN GENES ASSOCIATED FILE REFERENCE: CLOO1307 CURRENT PELLORTION NUMBER: 60/241,755 PRIOR PELLORTION NUMBER: 60/231,458 PRIOR PELLORTION NUMBER: 60/231,498 PRIOR PELLORTION	<pre>product in the control of the c</pre>	RESULT 7 US-09-710-279-603 Sequence 603, Application US/09710279 Fatent No. 6703492 GENERAL INFORMATION: APPLICATTON: STAPHYLOCOCCUS EPIDERMIDIS NUCLEIC ACIDS AND PROTEINS TITLE OF INVENTION: STAPHYLOCOCCUS EPIDERMIDIS NUCLEIC ACIDS AND PROTEINS FILE REFERENCE: PU3480US FILE REFERENCE: PU3480US CURRENT FILING DATE: 2000-11-09 FUICR APPLICATION NUMBER: 60/164,258 PRIOR APPLICATION NUMBER: 0005: 4472 SOFTWARE: PALENTIN VEY. 2.1 LENCOPTI 1569 TYPE: DNA ORGANISM: Artificial Sequence FEATURE:

•

1

Ŷ

S
0
0
2005
2
:17
ö
4
10
15
ø
Б
Ĵ
Aug
Mon

GENES AS THODS OF	Query Match15.4%; Score 29.6; DB 4; Length 601;Best Local Similarity 59.3%; Pred. No. 2;Best Local Similarity 59.3%; Pred. No. 2;Matches 50; Conservative 0; Mismatches 34; Indels 0; Gaps 0;Qy96 ATAAAAGGGGGGTTTTGGCAGAAAACAGGCGCTAGTATCATTGATGACAACATGGACTAAG 155Db108 ATATGACCCAGTAGTCTTTGAAAGGTCCTTCCCTATCTTTATGACAAGATGTTCCAAG 49Qy156 CAAAAGTGCTTGTAAAGGTCCTTGCCAGCCAAGTCTTTATGACAAGATGTTCCAAG 49Qy156 CAAAAGTGCTTGTCCCTGACCCA 179Db48 CTTATTTGTATATTTCCTGCCCCA 25Db48 CTTATTTGTATATTTCCTGCCCCA 25	RESULT 12 US-09-349-016-17095/c Sequence 17095, Application US/09949016 Secuent No. 6812339 REERL INPORMATION: TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF FILE REFERENCE: CLO01307 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT FILING DATE: 2000-04-14 PRIOR FILING DATE: 2000-10-20 PRIOR APPLICATION NUMBER: 60/231,755 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-010-03	<pre>> NUMBER DE SECTED NOS: ZUTULZ > NUMBER FRAESEQ for Windows Version 4.0 > SOFTWARE FRAESEQ for Windows Version 4.0 > SEQ ID NO 17095 > TYPE: DNA > ORGANISM: Human US-09-949-016-17095 Ouery Match 15.4%; Score 29.6; DB 4; Length 36855; Best Local Similarity 59.5%; Pred. No. 15; Matches 50; Conservative 0; Mismatches 34; Indels 0; Gaps 0; Oy 96 SATAAAGGGGGTTTTGGAAAAAGGGGGGGGGGGGGGGGG</pre>
<pre>% NUMBER OF SEQ ID NOS: 422 % SOFTWARE: FastSEQ for Windows Version 4.0 % SEQ ID NO 410 % LENGTH: 10303 % Lacotacillus rhamnosus % ORGANISM: Lactobacillus rhamnosus % 0.5% Pred. No. 6.7 % Matches 49; Conservative 0; Mismatches 32; Indels 0; Gaps 0; % 112 CGCAGAAACAGCGCAGGCAAGGAACAAGGACAAAGGAAAGGAAAGGAACAAGGAAGGAAGGACAAGGACAAGGAAGAAGGAAGGAAGGAAGGAAGAAGGAAAGAAGAAAA</pre>	RESULT 10 US-09-949-016-15255/c Sequence 15255, Application US/09949016 Fatent No. 6812339 Retent No. 6812339 RAPLICANT: VENTER, J. Craig et al. TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF CURRENT APPLICATION NUMBER: US/09/949.016	CURRENT FILING DATE: 2000-04-14 PRIOR APPLICATION NUMBER: 60/241, 755 PRIOR FILING DATE: 2000-10-20 PRIOR APPLICATION NUMBER: 60/231, 768 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-09-08 NUMBER OF SEQ ID NOS: 207012 SEQ ID NOS: 207012 SEQ ID NOS: 207012 LENGTH: 99797 TYPE: DNA ORGANISM: Human FEATURE: MAME/KEY: misc_feature NAME/KEY: misc_feature CONTRR INFORMATION: n = A, T,C OT G US-09-949-016-15255	Query Match15.5%Score 29.8DB 4Length 99797Best Local Similarity 51.1%Fred. No. 21Matches 70; Conservative 0; Mismatches 67Indels 0Gaps 0QY40 TCTTGTCGGGTGATTGGTCATTTCATAACGGGGGAAATAGATGGTGGAGGGGGTAAACCTTATAA 99Db32501 TGTAGGATGAATCGTGCATTGAGGGGGGAAATAGAAGGAGGGGGGGG

8 15:40:17 2005 Mon Aug

.ر

٩

us-10-782-899-1_copy_1_192.rni

—————————————————————————————————————	0; 05GAN 156 US-09-949 156 Duery Matches 386 Qy Db Db	Db 1341 TGCACTATTCCACGAGAAAGGCTATTGC QY 160 AGTGCTTGTCCCCTGAAAGAGG 18: Db 1401 TCTTCTTTTGGCTTCTTCAAAGAGGG 14: Db 1401 TCTTCTTTTGGCTTCTTCAAAGAGGG 14: SES THEREOF 5, 2005, 01:33:31 Job time : 107.28 secs 01:33:31	Gaps 0; TTTCGC 114 1 1 1 1 1 1 1 1 1 1 1 1 1 1
<pre>No. 6617156 L INFORMATION: CANT: Lynn Doucette-Stamm et al CANT: Lynn Doucette-Stamm et al OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES OF INVENTION: NUCLEIC ACID AND AMINO ACID SEQUENCES NT APPLICATION NUCLER: 0.90/0134,000C NT APPLICATION NUMBER: US 09/134,000C NT FILIGD DATE: 1997-08-13 APPLICATION NUMBER: US 60/055,778 FILIGNG DATE: 1997-08-15 R OF SEQ ID NOS: 6812 ARE: Patentin version 3.1 NO 3331 TH: 76 NO 3331 NG SEC ID NOS: 6812 ARE: Patentin version 3.1 NO 3331 NG SEC ID NOS: 6812 ARE: Patentin version 3.1 NO 3331 NG SEC ID NOS: 6812 ARE: Patentin version 3.1 NO 3331 NG SEC ID NOS: 6812 ARE: Patentin version 3.1 NG 3331 NG SEC ID NOS: 6812 NG SEC ID NOS NG SEC ID NOS NG</pre>	Query Match15.3%Score 29.4; DB 4; Length 768;Best Local Similarity 63.4%; Pred. No. 2.6;Indels 0; GapsMatches 45; Conservative 0; Mismatches 26; Indels 0; GapsOY97 TAAAGGGGGTTTTCGCGGAAAACAATGGGCTAAGCATGACAATGACATGGACTAAGCOY97 TAAAGGGGTTGGGGGAAAACAAGGGGTGAGTAACATTGATGACAATGACAATGACATGACAATGACATGACAATGACAATGACATGACACATGACAATGACATGACACATGACACATGACAATGACATGACAATGACATGACAATGACATGACAATGACAATGACAATGACAATGACACATGACACATGACAATGAATG	RESULT 14 US-09-949-016-142351/C US-09-949-016-142351/C F Sequence 142351, Application US/09949016 F Patent No. 681239 GRUERAL INFORMATION: APPLICANT: VENTER, J. Craig et al. APPLICANT: VENTER, J. Craig et al. APPLICANTON NUMBER: 00/949, 016 CURRENT FILING DATE: 2000-10-414 PRIOR APPLICATION NUMBER: 60/231, 768 PRIOR APPLICATION NUMBER: 60/231, 758 PRIOR APPLICATION NUMBER: 60/231, 758 PRIOR APPLICATION NUMBER: 700-10-20 PRIOR APPLICATION NUMBER: 700-30-30 PRIOR APPLICATION NUMBER: 700-30 PRIOR APPLICATION NUMBER: 700-30 PRIOR APPLICATION NUMBER: 700-30 PRIOR APPLICATION NUMBER: 700-30 PRIOR APPLICATION NUMBER PRIOR APPLICAT	Query Match15.2%; Score 29.2; DB 4; Length 601;Beet Local Similarity 54.7%; Pred. No. 2.7;Natches 58; Conservative 0; Mismatches 48; Indels 0; GapsQY55 CTATTTTCAATACCTTCGGGGAAATAGATGGTGAAACCCTTATAAAACGGGGGTTTTCGCDb265 CTAGTGTTAAAAAACCCACAAAAAGAGGGGGGGGGGGGG

GENBRAL INFORMATION: APPLICANT: VENTER, J. Craig et al. TITLE OF INVENTION: POLYMORPHISMS IN KNOWN GENES ASSOCIATED TITLE OF INVENTION: WITH HUMAN DISEASE, METHODS OF DETECTION AND USES THEREOF FILE REFERENCE: CLOOLJO7 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT APPLICATION NUMBER: US/09/949,016 CURRENT FILING DATE: 2000-041,755 PRIOR APPLICATION NUMBER: 60/231,758 PRIOR APPLICATION NUMBER: 60/231,768 PRIOR APPLICATION NUMBER: 60/231,768 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-20 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-10-03 PRIOR FILING DATE: 2000-10-03 PRIOR APPLICATION NUMBER: 60/231,498 PRIOR APPLICATION NUMBER: 60/231,498 PRIOR APPLICATION NUMBER: 2000-10-03 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLICATION NUMBER: 50/231,498 PRIOR APPLICATION NUMBER: 2000-10-03 PRIOR APPLICATION NUMBER: 2000-10-03 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLICATION NUMBER: 50/231,498 PRIOR APPLICATION NUMBER: 2000-10-03 PRIOR APPLICATION NUMBER: 50/231,498 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLICATION NUMBER: 5000-10-20 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLICATION NUMBER: 5000-10-20 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLICATION NUMBER: 5000-10-20 PRIOR APPLICATION NUMBER: 2000-10-20 PRIOR APPLIC

 100
 AACGCGGGGTTTTCGCAGAAACATGCGCTAGCGACA
 159

 101
 1
 11
 11
 1

 1
 1
 11
 11
 1
 1

 1
 1
 11
 11
 1
 1
 1
 1

 1
 1
 1
 11
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1</t ö 66 40 TCTTGTCTGATTCGTCTTTCCAATACCTTCGGGGGAAATAGATGGTGTGAAAACCCCTTATAA Gaps ö / Match 15.2%; Score 29.2; DB 4; Length 2385; Local Similarity 50.0%; Pred. No. 5.4; tes 73; Conservative 0; Mismatches 73; Indels 0; 1401 TCTTCTTTGGCTTCTTCAAAGAGGG 1426 160 AGTGCTTGTCCCCTGACCCCAAGAAGG 185 PE: DNA GANISM: Human 949-016-4010

÷

.

.

2005
15:40:18
ω
Aug
Mon

¢

		9.31 Seconds nts) cell updates/sec	ggatgcttt 192			8479088				e to have a t being printed, ution.	Description		999	1 AG-ND-11 6 2M0234D2	8 BP5197 8 CR2813		A hwe	0 H O	808 9 80 9 80	2 K08	CN690065 E0288A10- CA885628 B0120F01- CD553021 B0353C01- CD553973 B0369F09-
version 5.1.6 - 2005 Compugen Ltd.	model	<pre>4:59 ; Search time 1949.3 (without alignments 3749.196 Million ce</pre>	1_192 atgacccaagaagg	0.	34700 residues	parameters: 6		\$ summaries		sults predicted by chance o the score of the result the total score distribut	SUMMARIES										CN690065 CA885628 CD553021 CD553973
GenCore (c) 1993	using sw	5, 22:5	-1_COPY_ cggccatg	Gapext 1	, 190321	ig chosen	0000	0 8 100 45		of re gual t sis of	S UT										6 CD51
Gopyright (c	arch,	5, 200	- 782 - 899 - gggcgcggc	TY_NUC	44 seqs,	atisfying	0 200000000	mum Match mum Match ing first	[:* 9b_est1:* 9b_est2:* 9b_est2:* 9b_est54:* 9b_est6:* 9b_est6:* 9b_9ss1:* 9b_9ss1:*	numbe an or Y anal	t t		673 749 852	590 600	619 878	945 845	494 728 449	467	501 503	538 551 552	552 555 555 557
Сору	nucleic se	August	US-10- 192 1 gctg	IDENTI Gapop	342395	hits s	length: length:	: Mini Maxi List	E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	is the eater the erived by	& Query Match										17.3 17.3 17.3 17.3
	eic - nu		score:	table:	<u>.</u>	number of	DB seq DB seq	севвілд		Pred. No. score gre and is de	200	81.	40.8 36.4 34.6		44	 	 		 		33.2 33.2 33.2
	OM nucle	Run on:	Title: Perfect Sequence	Scoring	Searched	Total nu	Minimum Maximum	Post-pro	Database	P1 85 ar	Result	. ON	м 0 н U	0 4 N		00 00	11	111	116	18 19 20	21 22 23 24

CN682591 E0166H03- CD540845 B0226C02- CN676248 A0977D08- CN681180 E0147C03- CC007613 PUEDB37D AO017410 TF-HSP-2 CC0543738 B0251E12- CD543738 B0251E12- CC9893187 A0235506- CD541777 B0255780 CC983177 B0255710 CC981770 B0102B10- AQ268787 B0102B10- AQ268787 B0102B10- CC9433271 UT-M-HN0- CC9433921 UT-M-HN0- CC9433921 UT-M-HN0- CC9433921 UT-M-HN0- CC94513 A0424D01- CC94513 A0424D01- CC94513 A0424D01- CC94513 A0424D01- CC94513 A0424D01- CC94513 A0424D01- C7739778 UT-M-HN0- CC94513 A0424D01- C7739778 UT-M-HN0- AV314503 MUS MUSCU	IENTS	<pre>673 bp DNA linear GSS 25-SEP-2003 73067 Dog Library Canis familiaris genomic, e. a codata; Craniata; Vertebrata; Euteleostomi; rnivora; Fissipedia; Canidae; Canis, Halpern,A.L., Levy,S., Remington,K., L., Pop,M., Wang,W., Fraser,C.M. and sequencing and comparative analysis 98-1903 (2003) 98-1903 (2003) mic Research mic R</pre>	; Libraries were prepared from	re 40.8; DB 9; Length 673; d. No. 0.082; Mismatches 57; Indels 0; Gaps 0;	TGGCTTGACAAGCATAATCTTGTCTGATTGGTCTATTTTCAATACCTTCGGGGAAATAGA 82
CN682591 CN682591 CN682591 CN672845 CN681180 CN681180 CN681180 C0017413 AC017413 AC017413 C0043133 CN455104 C044519 C0455104 C0455104 C0455104 C0455902 C19204613 CN455104 C13739778 AC031367 AC031367 AC031367	ALIGNMENTS	og-17000371273067 Dog Li rvey sequence. GI:35257693 GI:35257693 GI:35257693 Liaris (dog) Liaris (dog) butheria: carnivora; Fis Metazoa; Chordata; Cran Metazoa; Chordata; Cran Metazoa; Chordata; Can Metazoa; Chordata; Can Metazoa; Chordata; Can Metazoa; Carnivora; Fis 1 to 673), 1898-1903 (200 1 (5641), 1998-1903 (200 1 (5641), 1998-1903 (200 1 (5641), 1998-1903 (200 1	i 1: BstXI; blood"	SCO Pre 0;	CETGETCEAI
しるししのののつちのののしてのののののののののののののののののののののののののののの			ale	. 28 88	TAA
552 552 552 552 552 555 555 555 555 555		<pre>15 6 699-1700037127306 15 6 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</pre>	/note="Site 1: Bs peripheral blood"	21. larity 56. Conservative	CAAGCAT
8.711 8.7111 8.71111 8.71111 8.71111 8.71111 8.71111 8.71111111 8.71111111111		44) 44) 44) 44) 44) 44) 44) 44) 44) 44)	. ~ 14	1 Similarit 15; Conse	TGGCTTGA TGGCTTG1
				al	23 1 326 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		RESULT 1 CE14436 LOCUS DEFINITION ACCESSION VERYONDS SOURCE ORGANISM AUTHORS AUTHORS JOURNAL PUBRED COMMENT FEATURES FEATURES	ORIGIN	Query Ma Best Loc Matches	S a

.

ŝ
ö
0
Ā
œ
Ч
••
0
4
••
S
н
œ
Aug
Mon

Db 336 CTCTGATTGCAAAA 323 BG542199 BG542199 B52 bp mRNA linear EST 03-APR-2001 DEFINITION 60251199 B52 bp mRNA linear EST 03-APR-2001 DEFINITION 60251187F1 NIH_MGC_77 Homo sapiens CDNA clone IMAGE:4696041 5',	ACCESSION B6342199 VERSION B6342199.1 GI:13534432 KEYWORDS B57. SOURCE Homo sapiens (human) ORGANISM Homo sapiens (human) ORGANISM Homo sapiens Enkaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Primates; Cattarrhini; Hominidae; Homo. REFERENCE 1 (bases 1 to 852) ATTHORS NIH-MGC http://mgc.nci.nih.gov/.	Tissila CONT CONT CONT CONT CONT CONT CONT CONT	<pre>High quality sequence stop: 365. High quality sequence stop: 365. Location/Qualifiers source</pre>	S'-ATTCTAAGGCCGAGGCCGACCCAATTC-11(3)LW-3' (WHER'E B' A' C, O C G and N = A, C, G, Or T). Average insert size 1.9 kb (range 0.5-4.0 kb). 12/15 colonies contained inserts by PGR. This library was enriched for full-length clones and was constructed by Clontech Laboratories (Palo Alto, CA). Note: this is a NIH_MGC Library." ORIGIN	Query Match18.0%Score 34.6; DB 4; Length 852;Best Local Similarity 55.4%; Pred. No. 7.9;State 1000 Natches 57; Conservative 0; Mismatches 54; Indels 0; Gaps 0;Qy38 AATCTTGTCTGATTGTCTTATTTTCAATACCTTCGGGGGAAATAGATGTGAAAAACCCTTAT 97Db446 ACTATGGTCTATTTTGCAACGCCAAATACATCGGGGGAACTAAGTGACGAGCCCAAATAT 505	Qy 98 AAAAGGGGGGTTTTGGCAGAAACATGGGGCTAGTGATGATGGACTAGGACTAGGA 157 Db 506 CAACGGCGGGCTCTATCCTATACTCGGACAAGTCACATTTTTCCATACATGGACTACCCC 565 Qy 158 1158 158 Db 566 A 566	RESULT 4 BH378221 BH378221 590 bp DNA linear GSS 10-DEC-2001 LOCUS BH378221 RND-TAM Anopheles gambiae genomic clone DEFINITION AG-ND-119J16, genomic survey sequence.
QY 83 TGTGAAAACCCTTATAAAACGCGGGGTTTCGCAGAACATGGGCTAGTATCATTGATGAC 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 16 14 14 14 14 17 14 14 14 14 18 TAGCAAGGTTTGATAAGCAGGAGGTTTAGCTTAGTCGGGTTCGGTTCGGTTGGTGTGT 445 Qy 143 AACATGGACTAA 154 0b 446 ATTCTGTAGTAA 457		<pre>UKGANISM Mus musculus Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. Marman(M, Malek, J., Shatsman, S., Akinret, B., Levins, M., Tregaye, G., Geer, K., Krol, M., Shvattsbeyn, A., Gebregeorgis, E., Russell, D., de Jong, P. and Fraser, C.M. TTLLE Mouse BAC End Sequences from Library RPCI-24 JOURNAL Unpublished (1999) COMMENT Contact: Shaying Zhao Contact: Shaying Zhao</pre>	Department or Eukaryout Genomics The Institute for Genomic Research 9712 Medical Center Dr., Rockville, MD 20850, USA Tel: 301 838 0200 Faz: 301 838 0200 Faz: 301 838 0200 Faz: 301 838 0200 Faz: 301 838 0200 Clones are derived from the mouse BAC library RPCI-24. For BAC Ilbrary availability, please contact Pieter de Jong (pdejong@mail.cho.org). Clones may be purchased from BACPAC Resources (http://www.clones.may be purchased from BACPAC Resources (http://www.clones.may be purchased from Lintro.html Place: 254 row: N column: 24 Seq primer: T7 Class: BAC ends.	FEATURES Location/Qualifiers source 1.749 /organism="Mus musculus" /mol type="genomic DNA" /mol type="C57BL/60" /db_xref="texcn1000" /clone="RPC1-24-254N24"	/sex="maps"Spleen/Brain" /cell_type="Spleen/Brain" /clome_tib="RPC1-24" /note="Vector: pTARBAC1; Site_1: BamH1; Site_2: BamH1; RPC1-24 Mouse BAC Library produced by Pieter de Jong. The RPC1-24 Mouse BAC Library produced by Pieter de Jong. The BamH1 sites using MboI partially digested male C57BL/6J DNA."	ORIGINORIGINQuery Match19.0%; Score 36.4; DB 8; Length 749;Query Match19.0%; Score 36.4; DB 8; Length 749;Best Local Similarity 54.5%; Pred. No. 2.1;Matches 73; Conservative 0; Mismatches 61; Indels 0; Gaps 0;Qy13 GGCCATGAAGTGGCTTGAAGTGAATATCTTGTCTGAATTGAATACCTTCG 72Qy13 GGCCATGAAGTGGCTTGAAATCATGCTGATTGATAATCTTCG 72Db456 GGCATTCACGTGCGCTTCACATGCAAAATCATGCCTGATGATAATGTTGCCAGTAATTCTTGC 397	QY 73 GGGAAATAGATGTGAAAACCCTTATAAAACGCGGGGTTTTTCGCAGAAACATGCGGCTAGTAT 132 Db 396 ATGCATTGGGTGTGAATACCATAATGCAGTAGCCCTCCATTTTGAAGCCATCGCTGTTAT 337 V 133 CATTGATGACAACA 146

۶

2005
:18
5:40
8 15
Aug
Mon

v

4

<pre>SOURCE Mus musculus (house mouse) Mus musculus (house mouse) ORGANIEM Mus musculus (house mouse) Mus musculus Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. REPERBNCE 1 (bases 1 to 600) AUTHORS Dunn, D., Aoyagi, A., Barber, M., Beacorn, T., Duval, B., Hamil, C., I (bases 1 to 600) AUTHORS Dunn, D., Aoyagi, A., Barber, M., Beacorn, T., Duval, B., Hamil, C., Reilly, M., Rose, M., Rose, R., Stokes, R., Tingey, A., von Niederhausern, A. and Wright, D., Weiss, R., Tingey, A., von Niederhausern, A. and Wright, D., Weiss, R., TITLE Muse whole genome scaffolding with paired end reads from 10kb Dasmid inserts JOURNAL Unpublished (2000) Contact: Robert B. Weiss University of Utah Genome Center University of Utah Renome Conter: Research Bldg., 20 S. 2030 E., SLC, UT 04112, USA</pre>	<pre>Tel: 801 585 5106 Fax: 801 585 7177 Email: ddum@genetiss.utah.edu Email: ddum@genetiss.utah.edu Email: ddum@genetiss.utah.edu Email: ddum@genetiss.utah.edu Ensert Length: 10000 Std Error: 0.00 Plate: 0234 row: D column: 24 Seq primer: CACAGGAAAGGTAATGACC Seq primer: CACAGGAAAAGGTAATGACC Class: plasmid ends 1: 600 Incertion/Qualifiers Class: plasmid ends 1: 600 Incertion(Dalifiers) Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corganism=Wus musculus" Corden: Plasmid UUGC2M library" Corne=Tucctor: PWD42nv; Purified genomic DNA Corne=Tucetor: PWD42nv; Purified genomic DNA Musculus C57BL/6J (female) was obtained from the JacKson Corne=Tucetor: PWD42nv; Prified genomic DNA Musculus C57BL/6J (female) was obtained from the JacKson Corne=Tucetor: PWD42nv; Prified genomic DNA Musculus C57BL/6J (female) was obtained from the JacKson Corne=Tucetor: PWD42nv; Parified and size-selected for a 9.5 to 1005 ind the obtenesis Adaptor oligonucleotides were Digated to the blunt ends in high molar excess. The adaptored DNA was purified and size-selected for a 9.5 to 10.05 kb range using preparative genome from a derivative concettorered DNA was purified and size-selected for a 9.5 to 10.05 kb range using preparative of portonumber interventive concettorered DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative of portonumber interventive concettorered DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative of portonumber interventive concettorered DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative of portonumber interventive concettorered DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative of portonumber interventive concettorered DNA was purified and size-selected for a 9.5 to 10.5 kb range using preparative of portonumber interventinterventive concettor</pre>	Inducible derivative or pushum AL. INE VECTOR was and with adaptors complementary to the insert adaptors and purified. The sheared, adaptored mouse DNA was annealed to adaptored vector DNA, and transformed into chemically-competent E. coli XII0-Gold (Stratagene) cells and selected for ampicillin resistance." ORIGIN		QY 111 TCCCAGAAACATCGCCTAGTATCATTGATGGACTAACCAAAAG 161 Db 210 1 <
 ACCESSION BH378221 ACCESSION BH378221.1 GI:17324363 VERNORDS GS. BH378221.1 GI:17324363 VERWORDS GS. Anopheles gambiae (African malaria mosquito) Anopheles gambiae (African malaria mosquito) Anopheles. REPERENCE 1 (bases 1 to 590) AUTHORS HONGY'S. HOGAN, Wang,X., Sarkar,A., Sim,C., Loftus,B.J., Anopheles. REPERENCE 1 (bases 1 to 590) AUTHORS HONG,Y.S., HOGAN, Wang,X., Sarkar,A., Sim,C., Loftus,B.J., Anopheles. REPERENCE 1 (bases 1 to 590) AUTHORS HONGY'S. HOGAN, Wang,X., Sarkar,A., Sim,C., Loftus,B.J., Anopheles. REPERENCE 1 (bases 1 to 590) AUTHORS HONG,Y.S., HOGAN,Y., Wang,X.L., Black,K., Zhang,HB., Cardner,M.J. and Collins,F.H. TITLE Construction of BAC library and generation of BAC end for the African malaria mosquito Anopheles gambiae JOURNAL MOL. Genet. Genomics 268 (6), 720-728 (2003) MEDLINE 2254265 	12655398	Query Match 17.9%; Score 34.4; DB 8; Length 590; Best Local Similarity 53.8%; Pred. No. 8.4; Best Local Similarity 53.8%; Pred. No. 8.4; Matches 71; Conservative 0; Mismatches 61; Indels 0; Gaps 0; QY 38 AATCTTGTCTGTGTGTTATTTTCATACCTTCGGGGAAATAGATGTGAAAACCCTTAT 97 QY 38 AATCTTGTTGTTGTTTTTCATACCTTCGGGGAAATAGATGTGAAAACCCTTAT 97 Db 459 AATTTTATCTTTTTTTTTTCATTCTTCCACTTCTACGAGGCAATTAGAATTAGATTAGATGT 518	QY 98 AAAAGGGGGTTTTCGCAGAAACATGGGGCTAGGACTAAGGA 157 Db 519 AAAAGGCGGTTTTAGTTGAATGTTAAGCTCGTCACAAAAAAGGGGGGGG	RESULT 5 A2964976/c A2964976 LOCUS A2964976 A2964976 DEFINITION 2M0234D34R Mouse 10kb plasmid UUGC2M library Mus musculus genomic 200ne UUGC2M0234D24 R, genomic survey sequence. ACCESSION A2964976.1 GI:13836203 KEYWORDS GSS. GSS.

FEATURES source source Query Matc Best Local Matches Op 52 Cy 65 Db 52 Cy 12 Cy 12 Cy 13 Cy 13 Db 64 Db 64 Db 64 Db 64 Cy 13 Db 64 Cy 13 Db 64 Cy 13 Db 64 Cy 12 Db 64 Cy 12 Db 64 Cy 12 Db 70 Db 64 Cy 12 Db 70 Db 70 DC 70 DD 70 DC 70 D	<pre>S006 Cao Bao Ford Sharaborg: ac.cn This is retroe cha astron is the manoner.ac.cn This is retroe cha astron is to charaborg: ac.cn This is retroe charaborg: ac.cn This is retroe charaborg: ac.cn Web site: http://ww.norg.ac.cn Web site: http://ww.norg.ac.cn //clone_jb=/07Ya sativa library Han B) //clone_retroeccontentorcnorcnantercontentorcnantercontentorcnantercontentorcnantercontentorcnantercontenton //clone_retroeccontentorcnantercontentorcontentorcnantercontentorcnantercontentorcnantercontenton //clone_retroeccontentorcnantercontentorcnantercontentorcnantercontentorcnantercontenton //clone_retroeccontentorcnantercontentontentorcnantercontentorcnantercontentontentorcnantercontent</pre>
PUBMED PUBMED AUTHORS TITLE	152888 (bases 1 to 945) mescope. rect Submission
JOURNAL	

AUTHORS Genoscope. TITLE Direct Submitsion TITLE Direct Submitsion TITLE Direct Submitsion JOURNAL Submitted (08-SEP-2000) Genoscope - Centre National de Sequencage, JOURNAL Submitted (08-SEP-2000) Genoscope - Centre National de Sequencage, Seqrefégenoscope.cns.fr - Web : www.genoscope.cns.fr) Esqrefégenoscope.cns.fr - Web : www.genoscope.cns.fr) FRANCE. (E-mail : Secretses: Saccharomyces bayanus var. uvarum, Saccharomyces rexiguus, Saccharomyces bayanus var. uvarum, Saccharomyces lactis var. lactis, Kluyveromyces thermotolerans, Kluyveromyces lactis var. lactis, Kluyveromyces thermotolerans, Kluyveromyces lactis var. lactis, Kluyveromyces thermotolerans, Kluyveromyces factis var. lactis, Kluyveromyces arxianus var. marxianus, Pichia angusta, Debaryomyces hansenii var. hansenii, Pichia sorbitophila, candida tropicalis and Varrowia lipolytica. Genomic inserts of 3 to 5 kb were prepared and both extremities were sequenced. See keywords for description of this sequence and for the sequence of the other extremity of this insert. FEATURES BOURCE Distromyces lacenomyces lactis Model how and and both to and the read endomit Date (organisme.cennomyces lactis Model how and and both to and the read endomited by a lactis Model how and and both the other extremity of this insert. FEATURES Dorgen Date Model how and and both the other extremity of this insert. Model how and and both the other extremity of this insert. Model how and and both Model h	<pre>/strain="CLIB 210" /variety="lactis" /db.rref="taxton:28985" /db.rref="taxton:28995" /dlone="BA0AB03B09" /clone="bA0AB03B09" /clone_lib="BA0AB" /clone_lib="BA0AB" /clone_socharomyces cerevisiae ORF YPR010c { /note="similar to Saccharomyces cerevisiae ORF YPR010c f /note="similar to saccharomyces cerevisiae ORF YPR010c f /note="si</pre>	Query Match17.5%Score 33.6; DB 9; Length 845;Best Local Similarity54.1%; Pred. No. 16;5, Indel8Matches66; Conservative1; Mismatches55; Indel8Qy23 TGGCTTGACAAGCATAATCTTGTCTGTCTGTTTTTTCAATACCTTCGGGGAAATAGA82Qy23 TGGCTTGACAAGCATAATCTTGTCTGCTGGGAAATAGA82Db165 TAGTTTGAGAAGCATCGTCTGATCGTCTAATTTCCAATACCTTGGGGGAAATAGA82		CA394392 (CS51a07.yl Human Ret (Un-normalized, unau 5', mRNA sequence. CA394392.1 GI:24728 EST. EST. Homo sapiens (human) 1 Homo sapiens	Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleoscomi; Bukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleoscomi; Mammala; Eutheria; Primates; Catarrhini; Hominidae; Homo. AUTHORS Wistow,G., Bernstein,S.L., Wyatt,M.K., Farris,R.N., Behal,A., TITLE Syressed sequence tag analysis of human RPE/choroid for the NEIBank Project: Over 6000 non-redundant transcripts, novel genes JOURNAL MOL Vis. 8 (4), 205-220 (2002) MEDLINE 22103460 PUBMED 12107410 COMMENT 22103460 PUBMED 12107410 COOMENT Esction on Molecular Structure and Function National Eye Institute (5/331, NIH, Betheeda, MD 20892-2740, USA
COMMENT This GSS is part of a random genomic sequencing program of thirteen yeast species: Saccharomyces bayanus var. uvarum, Saccharomyces variguus, Saccharomyces servazzii, Zygosaccharomyces rouxii, saccharomyces kervazzii, Zygosaccharomyces rouxii, saccharomyces kluyveromyces hermotolerans. Kluyveromyces lactis var. lactis, Kluyveromyces marxianus var. marxianus, Pichia angusta. Debaryomyces hansenii var. hansenii, Pichia sorbitophila, candida tropicalis and both extremities were sequenced. See keywords for description of this sequence and for the sequence of the other extremity of this insert. FEATURES 1. 945 source (clone="BB0AA0320" /clone="BB0AA0320" /clone="BB0AA0320" /clone="BB0AA03" /clone="BB0AA03"	<pre>misc_feature / 100000000000000000000000000000000000</pre>	Oy35CATAATCTTGTCTGATTGTCTATTATCATACCTTCGGGGGAAATAGATGAAACCCT0y111 </td <td>SULT 9 S0757U/c CUS FINITION CESSION RSION RSION RSION CUSCE CONCON</td> <td><pre>OKGANISM KLUYVEYEMCGE LaCLIS Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Kluyveromyces lacetaryota; Lo 845) AUTHORS Souciet.J.L., Aigle,M., Artiguenave,F., Blandin,G., Bolotin-Fukuhara,M., Bon,E., Brottier,P., Casaregola,S., de-Montigny,J., Neuveglise,C., Ozier-Kalogeropoulos,O., Potier,S., Saurin,W., Tekaia,F., Toffano-Nioche,C., Wesolowski-Louvel,M., Wincker,P. and Weisesbach,J.</pre></td> <td><pre>TITLE Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies JOURNAL PEBS Lett. 487 (1), 3-12 (2000) MEDLINE 20584711 PUBWED 11152076 NETRENCE 2 (bases 1 to 845) AUTHORS Dolotin-Fukuhara,M., Toffano-Nioche,C., Artiguenave,F., Nontrocher,F., Duchateau-Nguyen,G., Lemaire,M., Marmeisse,R., Montrocher,R., Nontraceau-Nguyen,G., Lemaire,M., Marmeisse,R., Montrocher,R., Rilyveromyces lactis JOURNAL FEBS Lett. 487 (1), 66-70 (2000) MEDLINE 20584721 PUBMED 1115286 REPERENCE 3 (bases 1 to 845)</pre></td>	SULT 9 S0757U/c CUS FINITION CESSION RSION RSION RSION CUSCE CONCON	<pre>OKGANISM KLUYVEYEMCGE LaCLIS Eukaryota; Fungi; Ascomycota; Saccharomycotina; Saccharomycetes; Saccharomycetales; Saccharomycetaceae; Kluyveromyces lacetaryota; Lo 845) AUTHORS Souciet.J.L., Aigle,M., Artiguenave,F., Blandin,G., Bolotin-Fukuhara,M., Bon,E., Brottier,P., Casaregola,S., de-Montigny,J., Neuveglise,C., Ozier-Kalogeropoulos,O., Potier,S., Saurin,W., Tekaia,F., Toffano-Nioche,C., Wesolowski-Louvel,M., Wincker,P. and Weisesbach,J.</pre>	<pre>TITLE Genomic exploration of the hemiascomycetous yeasts: 1. A set of yeast species for molecular evolution studies JOURNAL PEBS Lett. 487 (1), 3-12 (2000) MEDLINE 20584711 PUBWED 11152076 NETRENCE 2 (bases 1 to 845) AUTHORS Dolotin-Fukuhara,M., Toffano-Nioche,C., Artiguenave,F., Nontrocher,F., Duchateau-Nguyen,G., Lemaire,M., Marmeisse,R., Montrocher,R., Nontraceau-Nguyen,G., Lemaire,M., Marmeisse,R., Montrocher,R., Rilyveromyces lactis JOURNAL FEBS Lett. 487 (1), 66-70 (2000) MEDLINE 20584721 PUBMED 1115286 REPERENCE 3 (bases 1 to 845)</pre>

Page 5

us-10-782-899-1_copy_1_192.rst

. .

•

Mon Aug 8 15:40:18 2005

reg scolumn: 11 stop: 728. [ifiers a mays" a m	<pre>Duery Match 17.4%; Score 33.4; DB 8; Length 728; Best Local Similarity 62.7%; Pred. No. 18; Matches 52; Conservative 0; Mismatches 31; Indels 0; Gaps 110 TTCGCAGAAACATCGCTAGTATCATTGATCACAACATGGACTAAGCAAAAGTGCTTGTC 110 TTCGCAGAAACATCGCTAGTATCATTGATCACAACATGGACTAAGCAAAAGTGCTTGTC</pre>		CCUS CCUS CCUS DEFINITION A0932B01-5 NIA Mouse Embryonic Stem (ES) cell (Lif+, 48 h, high density) cDNA library (Long) Mus musculus cDNA clone NIA:A0932B01 IMAGE:30769836 5', mRNA sequence. ACCESSION CN673288.1 GI:47439739 VERSION CN673288.1 GI:47439739 KEYWORDS EST. SOURCE Mus musculus (house mouse) COCNTCM Mus musculus (house mouse)		TITLE Transcriptome analysis of mouse stem cells and early embryos JOURNAL PLOS Biol. 1 (3), 410-419 (2003) COMMENT Contact: Dawood B. Dudekula National Institute on Aging/National Institutes of Health 331 Cassell Drive, Suite 4000, Baltimore, MD 21224-6820, USA Email: cdna@lguun.grc.nia.nih.gov Plate: A0932 row: B column: 01 Seg primer: M13 Reverse High quality sequence stop: 449 POLYAANO.	FEATURES Location/Qualifiers source 1.449 /organism="Mus musculus"
Tel: 301 402 3452 Fax: 301 402 345 Fax: 301 402 345 Fax: 301 402 345 Fax: 301 402 Fax: 301 402 Fax: 301 404 Fax: 301 404 Fax: 4000 400 Fax: 4000 4000 4000 Fax: 4000 4000 4000 4000 4000 4000 4000 40	<pre>chttp://www.invitrogen.com/>). The library code designation was cs. For this library, cDNA inserts were cloned into the Norl/Mlui sites of the vector. EST analysis was performed on the unamplified library at the NIH Intramural Sequencing Center (NISC)."</pre>	Query Match17.4%Score 33.4; DB 6; Length 494;Best Local Similarity52.5%; Pred. No. 17;66; Indels0; GapsMatches73; Conservative0; Mismatches66; Indels0;Qy42 TTGTCTGATTCTTCAATACCTTCGGGGAAATAGATGGTGAAAAACCCTTATAAAA101Db7 TTTTCTAACTTTGCCTCCAAGCCTAAAAGCAATGAATGAA	Qy102CGCGGGGTTTTCGCGGAAAAGATGGGCTAGTAGTAGTAGTAGTAAAGGAAAAG1611611611611611611611611611611611621260716216216716216716316316316316316316116	RESULT 11 BH885133 BH885133 728 bp DNA linear GSS 05-AUG-2002 DEFINITION bw61c11.b1 WGS-ZmaysF (JM107 adapted methyl filtered) Zea mays DEFINITION bw61c11.b1 WGS-ZmaysF (JM107 adapted methyl filtered) Zea mays ACCESSION BH885133 G1212101 5', genomic survey sequence. ACCESSION BH885133.1 G1:22121030 VERSTON BH885133.1 G1:22121030 KEYWORDS GSS. SOURCE Zea mays DRATYOLA VIridiplantae; Streptophyta; Embryophyta; Tracheophyta;	<pre>a; Magnoliophyta; Liliopsida; Poales; Poc coideae; Andropogoneae; Zea. coideae; Andropogoneae; Zea. coideae; Andropogoneae; Zea. coideae; Muller, Bullar, S., Nasci F., King, L., Miller, B., Muller, S., Nasci F., King, L., Miller, B., Muller, S., Nasci F., King, L., Miller, Buller, S., Nasci Recombie, W.R. and Martienssen, R.A. (2002) Richard McCombie Richard McCombie Richard Chonwe Sequencing Center Harbor Laboratory</pre>	PO Box 100, Cold Spring Harbor, NY 11724, USA Tel: 516 367 8884 Fax: 516 367 8874

۶

)
>
>
222
>
ł
•
>
>
•
2
1
)

JOURNAL method JOURNAL Genome Res. 11 (9) MEDLINE 21429098 PUBMED 11544199 CONMENT Contact: Dawod B. Laboratory of Gene National Institute Baail: Canaelgeun. Plate: B0768 row: Seq Primer: M13 Re High quality seque	FEATURES FOURARIO Location/ Source /mol_type /mol_type /mol_type /mol_type /mol_type /mol_type /mol_type /sex="mal /dbr_ref=	2.5 ug off	ECD LOUGE SEPARATE CDNAS WEL EX TAG DO DYDOLOCIA	ipour The and clone vector. 1 ligation	average i construct ORIGIN	Query Match 17.3 Best Local Similarity 52.1 Matches 74; Conservative	N	Db 333 GGATTAAAGCTT Db 333 GGATTTAAAGTTCTC	QY 140 GACAACATGGACTAAC	Db 393 AACAATGAAGAAGAAG
<pre>/mol_type="mRNA" /mol_type="mRNA" /db_xref="niaESTA0932B01-5" /db_xref="niaESTA0932B01-5" /db_xref="tason:1090" /clone="NIA.A0932B01 IMAGE:30769836" /clone="NIA.A0932B01 IMAGE:30769836" /tissue_type="Embryonic Stem Cell" /tissue_type="Tissue" /tissue_type="Embryonic Stem Cell" /tissue_type="Tissue" /tissue_type="Tissue"/tissue" /tissue_type="Tissue" /tissue_type="Tissue" /tissue_type="T</pre>	ORIGIN STILE 2: NOLT, MOURE CDNA PrOJECT by the Laboratory of GeneTics, National Institute on Aging (NIA), Intramural Research Program, NIH (http://genu.grc.nia.nih.gov/CDNA). This is a long-transcript enriched CDNA library (Ref. Genome Res . 11: 1553-1558 (2001). [PMID: 11544199]). ES cells were plated at density 3x104/cm2, on gelatin-coated plates and cultured for 48 hrs at 37 OC, 54 CO2. Culture medium: DBMA supplemented with 118 FBS, 2 mM L-glutamine, 0.1 mM NEDA, Im Sodium pyruvate, 0.1 mM beta-mercaptechanol, 1000 U/ml LIF, 100 U/ml penicillin, and 100 ug/ml streptomycin. Double-stranded cDNAs were synthesized with an Oligo(dT) primer [Invitrogen: 5'-pGACTAGTTCTAGATCGCGGGGGGGGGGCGCCTTTTTTTTT	Query Match 17.3%; Score 33.2; DB 7; Length 449; Best Local Similarity 52.1%; Pred. No. 19; Matches 74; Conservative 0; Mismatches 68; Indels 0; Gaps 0;	Qy 20 Addregectreacaageataarctterctgatregtctaattreactregeggaaar 79 U Db 274 Addregeggaaaat 333	Qy 80 Agatgraaaacccttataaaacgcgggttttcgcagaaacatgcgctagtactagt 139 [1] [1] [1] [1] [1] [2] [3] Ggatttaaagttcctcttacaacgcctcattggaaagagatactcgattcggg 393	OY 140 GACAACATGGACTAAGCAAAAG 161 Db 394 AACAATGAAGAAGAAGAAG 415	RESULT 13 CF166270	LOCUS CF166270 467 bp mRNA linear EST 25-JUL-2003 DEFINITION B0768B01-5 NIA MOUBE Embryonic Germ Cell CDNA Library (Long) Mus musculus CDNA clone NIA:B0768E01 IMAGE:30464400 5', mRNA Bequence. ACCESSION CF166270.1 G1:33275824 VERSION CF166270.1 G1:33275824	SM	Euk Mam	AUTHORS Plac, Y., Ko, N.T., Lim, M.K. and Ko, M.S.H. TITLE Construction of long-transcript enriched cDNA libraries from submicrogram amounts of total RNAS by a universal PCR amplification

<pre>ML defined ML Genome Res. 11 (9), 1553-1558 (2001) (SE 2142908 (SE 11544199 Contact: Dawood B. Dudekula Laboratory of Genetics National Institute on Aging/National Institutes of Health National Institute on Aging/National Institutes of Health Sassell Drive, Suite 4000, Baltimore, MD 21224-6820, USA Email: cdna@lgsun.grc.nia.nih.gov Plate: B0768 row: E column: 01 Seq primer: M13 Reverse High quality sequence stop: 467 POLYA=NO.</pre>	9 27 24	<pre>Y Match 17.3%; Score 33.2; DB 7; Length 467; Local Similarity 52.1%; Pred. No. 19; nes 74; Conservative 0; Mismatches 68; Indels 0; Gaps 0;</pre>	20 aagreggetragcanaart 79 21 1111 1111 1111 273 aagreggeggeggetraggeggetreggeggegggegggggggggg
JOURNAL MEDLINE FUBMED COMMENT	PEATURES sou	Query M Best Lo Matches	8 8 8 8 8

.

2005
0
ο
Ň
œ
÷.
0
4
S
÷.
•••
œ
m
Aug
7
đ
Mon
¥.
-

/motestructure: pCMV-SPORT6 (Invitrogen); Site_1: Sal1; Site_2: Not1; Mouse cDNA project by the laboratory of Genetics, National Institute on Aging (NIA), Intramural Research Program, NIH (http://Igsun.grc.nia.nih.gov/DNA). This is a long-transcript enriched cDNA library (Ref. Genome Res. 11: 1553-1589 (2001). [PMID: 11544199]). Total RNAS were extracted from a pool of 16 embryos at 9.5-days postcoitum. Double-stranded cDNAs were synthesized with an Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 (bases 1 to 501) Piao, Y., Ko.N.T., Lim,M.K. and Ko,M.S.H. Construction of Long-transcript enriched cDNA libraries from Eubmicrogram amounts of total RNAs by a universal PCR amplification CD552026 501 bp mRNA linear EST 11-JUN-2003 B0337C08-5 NIA Mouse E9.5 Whole Embryo CDNA Library (Long) Mus musculus CDNA clone NIA:B0337C08 IMAGE:30432607 5', mRNA sequence. /tissue type="89.5 whole embryo" /dev stage="whole embryo" at 9.5-days postcoitum" /lab_host="DH108"

 273
 Archill
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1
 1 80 AGATGTGAAAACCCTTATAAAACGCGGGTTTTTCGCAGAAACATGCGCTAGTATCATTGAT 139 333 GGATTTAAAGTTCCTCTTACAACACCTCATTTGGAAAAGAGATACTCGATTCAGTTCGGG 392 /clone_lib="NIA Mouse E9.5 Whole Embryo cDNA Library (Long)" Contact: Dawood B. Dudekula Laboratory of Genetics National Institutes of Health 333 Cassell Drive, Suite 4000, Baltimore, MD 21224-6820, USA Email: cdna@19sungrc.nia.nih.gov Plate: B0337 row: C column: 08 /db_xref="niaEST:B0337C08-5" /db_xref="taxon:10090" /clone="NIA:B0337C08 IMAGE:30432607" Genome Res. 11 (9), 1553-1558 (2001) 'organism="Mus musculus" Seq primer: M13 Reverse High quality sequence stop: 501 POLYA=NO. Location/Qualifiers 140 GACAACATGGACTAAGCAAAAG 161 393 AACAATGAAGAAGAAGAAGAAGAAG 414 /mol_type="mRNA" /strain="C57BL/6J" Mus musculus (house mouse) CD552026.1 GI:31599757 .501 Mus musculus 21429098 11544199 CD552026 method EST. source DEFINITION ORGANISM MEDLINE PUBMED COMMENT AUTHORS TITLE ACCESSION VERSION KEYWORDS SOURCE RESULT 15 REFERENCE JOURNAL FEATURES CD552026 LOCUS δ g 8 g 01900(dT) primer [Invitrogen: 01900(dT) primer [Invitrogen: 9.1 ug of total RNA, treated with T4 DNA polymerase, and purified by tehanol-precipitation. The CDNAs were ligated to Lone-linker LL-Sal4, purified by phenol/chloroform, and separated from free linkers by Centricon 100. Then, the CDNAs were amplified by long-range high fidelity PCR using EX Taq polymerase (Takara) with a primer Sal4-S. The products were purified by phenol/chloroform and Centricon 100. The CDNAs were digested with Sal1 and NoLI enzymes and cloned into Sal1/NoLI site of pSPORTI plasmid vector. The DHOB E. colinber was transformed with the ligation mixture by the standard chemical method. The average insert size is about 2.5 kb. The library was constructed by Yulan Piao (NIA)." /note="vector: pspORT1 (Invitrogen); Site_1: Sal1; Site_2: Not1; Mouse cDNA project by the Laboratory of Genetics." Not1: Mouse cDNA project by the Laboratory of Genetics. Program, NIH (http://jsun.grc.nia.nih.gov/cDNA). This is a long-transcript enriched cDNA library [Ref. Genome Res. 11: 1533-1558 (2001). [PMID: 11544199]). Total RNAS were extracted from a pool of 13 embryos at 8.5-Gays postcoitum. Double-stranded cDNAs were synthesized with an Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia; Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Mus. 1 (bases 1 to 493) 2 (bases 1 to 493) 3 (bases 1 to ö EST 29-DEC-2003 CK391130 493 bp mRNA linear EST 29-DEC-200 K0827F01-5 NIA Mouse 8.5-dpc Whole Embryo CDNA Library (Long) Mus musculus CDNA clone NIA:K0827F01 IMAGE:30080988 5', mRNA sequence. CK391130 20 AAGTGGCTTGACAAGCATAATCTTGTCTGATTCGTCTATTTTCAATACCTTCGGGGAAAT 79 clone lib="NIA Mouse 8.5-dpc Whole Embryo cDNA Library" المصمرات Gaps Laboratory of Genetics National Institute on Aging/National Institutes of Health 333 Cassell Drive, Suite 4000, Baltimore, MD 21224-6820, USA /clone="NIA:K0827F01 IMAGB:30080988" /clone="NIA:K0827F01 IMAGB:30080988" /tissues type="whole embryo including extraembryonic tissues at 8.5-days postcoitum" /dev fage="8.5-days postcoitum" /lab_host="DH108" ;0 DB 7; Length 493; 68; Indels Query Match 17.3%; Score 33.2; DB Best Local Similarity 52.1%; Pred. No. 19; Matches 74; Conservative 0; Mismatches /mol_type="mRNA" /strain="C57BL/6J" /db_xref="niaEST:K0827F01-5" /db_xref="taxon:10090" Genome Res. 11 (9), 1553-1558 (2001) Email: cdna@lgsun.grc.nia.nih.gov Plate: K0827 row: F column: 01 Seq primer: M13 Reverse High quality sequence stop: 493 /organism="Mus musculus" Location/Qualifiers Contact: Dawood B. Dudekula Mus musculus (house mouse) Mus musculus CK391130.1 GI:40381649 I. .493 (Fong) POLYA=No. 21429098 11544199 method EST BOULCE SOURCE ORGANI SM Best Loca Matches LOCUS DEFINITION REFERENCE AUTHORS TITLE JOURNAL MEDLINE PUBMED COMMENT ACCESSION VERSION KEYWORDS RESULT 14 CK391130 FEATURES ORIGIN 5

ł

•

digested with Sall and NotI enzymes and cloned into Sall/NotI site of pCMV-SPORT6 plasmid vector. The DH10B E. coli host was transformed with the ligation mixture by the standard chemical method. The average insert size is about 3.0kb. The library was constructed by Yulan Piao."

Ouery Match 17.3%; Score 33.2; DB 6; Length 501; Best Local Similarity 52.1%; Pred. No. 20; Matches 74; Conservative 0; Mismatches 68; Indels 0; Gaps 0 OY 20 AAGTGGCTTGAACAAAATCTTGATTAGTTATTATCAATAACCTTCGGGGAAAAT 79

ORIGIN

ö

 Qy
 80
 AGATGTGAAAACCCTTATAAAACGGGGGTTTTCGCAGAAACATGGCTAGTATGAT
 139

 Db
 333
 GGATTTAAAGTTCCTCTTACAACACCCCCTCATTTGGAAAGGAGATACTCGATTCAGTTCGGG
 392

db 333 gdatrtaalgerectertacaacaceercatrtggaaaagagatac Qy 140 gacaacarggeeraagg 161

Db 393 AACAATGAAGAAGAAGAAGAAGAAG 414

Search completed: August 6, 2005, 01:30:34 Job time : 1954.31 secs

THIS PAGE BLANK (USPTO)

•

•